Engineering Approach to Assessing the Vulnerability of Water Abstraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assumptions
2.2. Rationale
3. Method Validation
3.1. River Jadro Spring
3.2. River Krka
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadoff, C.; Muller, M. Water Management, Water Security and Climate Change Adaptation: Early Impacts and Essential Responses; TEC Background papers, Technical committee; ©Global Water Partnership: Stockholm, Sweden, 2019; ISSN 1652-53962. [Google Scholar]
- Hartman, A.; Lange, J.; Aguado, A.; Mizyed, M.; Smiatek, G.; Kunstman, H. A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring. J. Hydrol. 2012, 468–469, 130–138. [Google Scholar] [CrossRef]
- Karleuša, B.; Rubinić, J.; Radošić, M.; Krvavica, N. Analysis of Climate Change Impact on Water Supply in Northern Istria (Croatia). Tech. Gaz. 2018, 25 (Suppl. S2), 366–374. [Google Scholar] [CrossRef]
- Lancia, M.; Petitta, M.; Zheng, C.; Saroli, M. Hydrogeological insights and modelling for sustainable use of a stressed carbonate aquifer in the Mediterranean area: From passive withdrawals to active management. J. Hydrol. Reg. Stud. 2020, 32, 100749. [Google Scholar] [CrossRef]
- Caretta, M.A.; Mukherji, A.M.; Arfanuzzaman, R.A.; Betts, A.; Gelfan, Y.; Hirabayashi, T.K.; Lissner, J.; Liu, E.; Lopez Gunn, R.; Morgan, S.; et al. Supratid, 2022: Water. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 551–712. [Google Scholar] [CrossRef]
- Vogel, J.M.; Smith, J.B. Climate Change Vulnerability Assessments: A Review of Water Utility Practices, Technical Report, Office of Water Environmental Protection Agency, August 2010, EPA 800-R-10-001. Available online: https://www.researchgate.net/publication/259931549 (accessed on 12 January 2024).
- Kara DiFrancesko, K.; Giterman, A.; Purkey, D. Bottom-Up Assessment of Climate Risk and the Robustness of Proposed Flood Management Strategies in the American River, CA. Water 2020, 12, 907. [Google Scholar] [CrossRef]
- Garcia, L.E.; Matthews, J.H.; Rodriguez, D.J.; Wijnen, M.; DiFrancesco, K.N.; Ray, P. Beyond Downscaling—A Bottom-up Approach to Climate Adaptation for Water Resources Management; World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- IPCC 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC 2014. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed CB Field et al (Cambridge); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Estoque, R.C.; Ishtiaque, A.; Parajuli, J.; Athukorala, D.; Rabby, Y.W.; Ooba, M. Has the IPCC’s revised vulnerability concept been well adopted? Ambio 2023, 52, 376–389. [Google Scholar] [CrossRef] [PubMed]
- IPPC 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; McCarthy, J.J., Ed.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Nesh, L.; Gleick, P. Sensitivity of streamflow in the Colorado Basin to climatic changes. J. Hydrol. 1991, 125, 221–241. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modelling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Alaa, A.J.; Al-Hasani, A.A. Sensitivity assessment of the impacts of climate change on streamflow using climate elasticity in Tgris River Basin, Iraq. Int. J. Environ. Stud. 2019, 76, 7–28. [Google Scholar] [CrossRef]
- Li, B.; Wang, G.; Ding, H.; Chen, Y. An evaluation method of the sustainability of water resource in karst region: A case study of Zunyi, China. Appl. Water Sci. 2017, 7, 1391–1397. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Leonard, M.; Do, H.X.; Westra, S.; Seneviratne, S.I. Observed trends in global indicators of mean and extreme streamflow. Geophys. Res. Lett. 2019, 46, 756–766. [Google Scholar] [CrossRef]
- Liu, Y.; Wagner, T.; Hartman, A. Assessing streamflow sensitivity to precipitation variability in karst influenced catchments with unclosed water balances. Water Resour. Res. 2021, 57, e2020WR028598. [Google Scholar] [CrossRef]
- Matrosov, E.S.; Padula, S.; Harou, J.J. Selecting Portfolios of Water Supply and Demand Management Strategies under Uncertainty—Contrasting Economic Optimisation and ‘Robust Decision Making’ Approaches. Water Resour. Manag. 2013, 27, 1123–1148. [Google Scholar] [CrossRef]
- Höllermann, B.; Evers, M. Coping with uncertainty in water management: Qualitative system analysis as a vehicle to visualize the plurality of practitioners’ uncertainty handling routines. J. Environ. Manag. 2019, 235, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, A.; Rodriguez-Iturbe, I.; Rigon, E.; Ijjasz-Vasquez, R.L. Bras Self-organized fractal river networks. Phys. Rev. Lett. 1993, 70, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.D.; Delleur, J.W.; Yevjevicch, V.; Lane, W.L. Applied Modelling of Hydrologic Time Series; Water Resources Publications: Littleton, CO, USA, 1980. [Google Scholar]
- Margeta, J. Water abstraction management under climate change: Jadro spring Croatia. Groundw. Sustain. Dev. 2022, 16, 100717. [Google Scholar] [CrossRef]
- Official gazette of the Republic of Croatia. NN 46/2020. Strategija Prilagodbe Klimatskim Promjenama u Republici Hrvatskoj za Razdoblje do 2040. Godine s Pogledom na 2070. Godinu (Climate Change Adaptation Strategy in the Republic of Croatia for the Period up to 2040 with a View to 2070), Narodne Novine, 46/2020, Zagreb, Croatia (15.4.2020). Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_04_46_921.html (accessed on 10 February 2023).
- Bonacci, O. Hydrology of the karst spring Jadro (Croatia). Geophys. Res. Abstr. 2011, 13, EGU2011-72. [Google Scholar]
- Milanovic, P. Water Resources Engineering in Karst; CRC Press: London, UK, 2004. [Google Scholar]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water. In Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008; 210p. [Google Scholar]
- Bonacci, O.; Ljubenkov, I. New insight into the Krka River hydrology, in Croatian Nove spoznaje o hidrologiji rijeke Krke. Hrvat. Vode 2005, 13, 265–281. [Google Scholar]
- Bonacci, O.; Roje-Bonacci, T.; Andric, I. Hydrological analysis of Skradinski Buk tufa waterfall. Environ. Earth Sci. 2017, 76, 669. [Google Scholar] [CrossRef]
- Rathnayaka, K.; Hector Malano, H.; Arora, M. Assessment of Sustainability of Urban Water Supply and Demand Management Options: A Comprehensive Approach. Water 2016, 8, 595. [Google Scholar] [CrossRef]
- Lacasse, M.A.; Abhishek, G.; Travis, V.M. Durability and Climate Change—Implications for Service Life Prediction and the Maintainability of Buildings. Buildings 2020, 10, 53. [Google Scholar] [CrossRef]
- Fiorillo, F. Hydraulic Behaviour of Karst Aquifers. In Karst Aquifers—Characterization and Engineering; Stevanovic, Z., Ed.; Professional Practice in Earth Sciences; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
Characteristic Values | Discharge Group | ||
---|---|---|---|
Qaverage (m3/s) | Qmax (m3/s) | Qmin (m3/s) | |
Average | 9.81 | 51.81 | 4.29 |
Max | 12.02 | 70.06 | 4.85 |
Min | 7.81 | 31.57 | 3.72 |
D(max − min) | 4.21 | 38.49 | 1.13 |
Indicator kx | 0.43 | 0.74 | 0.26 |
Qhistoric (m3/s) | Precipitation Change (%) | Qxaverage,future (m3/s) | kxfuture | Dxfuture (m3/s) | FOS | Dxdesign (m3/s) | Qxaverage,design (m3/s) |
---|---|---|---|---|---|---|---|
Maximal change scenario for the year 2100 | |||||||
(9.81) | Annual (−7) | 9.12 | 0.43 | 3.86 | 0.8 | 3.09 | 7.30 |
(51.81) | Wet period (+7) | 55.44 | 0.77 | 42.63 | 1.2 | 51.15 | 66.53 |
(4.29) | Dry period (−25) | 3.22 | 0.22 | 0.72 | 0.8 | 0.58 | 2.57 |
Minimal change scenario for the year 2100 | |||||||
(9.81) | Annual (−2) | 9.61 | 0.43 | 4.07 | 0.8 | 3.25 | 7.69 |
(51.81) | Wet period (+2) | 52.85 | 0.75 | 39.62 | 1.2 | 47.54 | 63.42 |
(4.29) | Dry period (−5) | 4.08 | 0.26 | 1.05 | 0.8 | 0.84 | 3.26 |
Characteristic Values | Discharge Group | ||
---|---|---|---|
Qaverage (m3/s) | Qmax (m3/s) | Qmin (m3/s) | |
Average | 51.3 | 258 | 10.9 |
Max | 84.2 | 481 | 20.7 |
Min | 22.5 | 83.5 | 4.99 |
D(max − min) | 61.7 | 397.5 | 15.71 |
Indicator kx | 1.20 | 1.54 | 1.44 |
Qhistoric (m3/s) | Precipitation Change (%) | Qxaverage,future (m3/s) | kxfuture | Dxfuture (m3/s) | FOS | Dxdesign (m3/s) | Qxaverage,design (m3/s) |
---|---|---|---|---|---|---|---|
Maximal change scenario for 2100 year | |||||||
(51.3) | Annual (−7) | 47.71 | 1.20 | 57.25 | 0.8 | 45.80 | 38.27 |
(258) | Wet period (+7) | 276.06 | 1.90 | 523.20 | 1.2 | 627.84 | 331.27 |
(10.9) | Dry period (−25) | 8.18 | 1.46 | 11.90 | 0.8 | 9.52 | 6.54 |
Minimal change scenario for 2100 year | |||||||
(51.3) | Annual (−2) | 50.27 | 1.20 | 60.33 | 0.8 | 48.26 | 40.22 |
(258) | Wet period (+2) | 263.16 | 1.63 | 428.04 | 1.2 | 513.64 | 315.79 |
(10.9) | Dry period (−5) | 10.35 | 1.44 | 14.93 | 0.8 | 11.94 | 8.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margeta, J. Engineering Approach to Assessing the Vulnerability of Water Abstraction. Appl. Sci. 2024, 14, 1879. https://doi.org/10.3390/app14051879
Margeta J. Engineering Approach to Assessing the Vulnerability of Water Abstraction. Applied Sciences. 2024; 14(5):1879. https://doi.org/10.3390/app14051879
Chicago/Turabian StyleMargeta, Jure. 2024. "Engineering Approach to Assessing the Vulnerability of Water Abstraction" Applied Sciences 14, no. 5: 1879. https://doi.org/10.3390/app14051879
APA StyleMargeta, J. (2024). Engineering Approach to Assessing the Vulnerability of Water Abstraction. Applied Sciences, 14(5), 1879. https://doi.org/10.3390/app14051879