THz Data Analysis and Self-Organizing Map (SOM) for the Quality Assessment of Hazelnuts
Abstract
:1. Introduction
2. Experimental Setup
3. Samples
4. Results
4.1. Statistical Data Analysis Methods
- Number of hazelnuts classified as good: 140, including one bad → sorting error: 0.7%.
- Number of hazelnuts classified as bad: 70, including one good → sorting error: 1.4%.
- Number of hazelnuts classified as bad: 79, including 9 good → sorting error: 0%.
- Percentage of good hazelnuts lost: 11%.
4.2. Neural Networks Methods
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cubero-Leon, E.; Peñalver, R.; Maquet, A. Review on metabolomics for food authentication. Food Res. Int. 2013, 60, 95–107. [Google Scholar] [CrossRef]
- Klockmann, S.; Reiner, E.; Cain, N.; Fischer, M. Food Targeting: Geographical Origin Determination of Hazelnuts (Corylus avellana) by LC-QqQ-MS/MS-Based Targeted Metabolomics Application. J. Agric. Food Chem. 2017, 65, 1456–1465. [Google Scholar] [CrossRef]
- Locatelli, M.; Coïsson, J.D.; Travaglia, F.; Cereti, E.; Garino, C.; D’andrea, M.; Martelli, A.; Arlorio, M. Chemotype and genotype chemometrical evaluation applied to authentication and traceability of “Tonda Gentile Trilobata” hazelnuts from Piedmont (Italy). Food Chem. 2011, 129, 1865–1873. [Google Scholar] [CrossRef]
- Moscetti, R.; Saeys, W.; Keresztes, J.C.; Goodarzi, M.; Cecchini, M.; Danilo, M.; Massantini, R. Hazelnut Quality Sorting Using High Dynamic Range Short-Wave Infrared Hyperspectral Imaging. Food Bioprocess Technol. 2015, 8, 1593–1604. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S. Raman Chemical Imaging System for Food Safety and Quality Inspection. Trans. ASABE 2010, 53, 1873–1882. [Google Scholar] [CrossRef]
- Kelkar, S.; Boushey, C.J.; Okos, M. A method to determine the density of foods using X-ray imaging. J. Food Eng. 2015, 159, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.K.; Husin, Z.; Yasruddin, M.L.; Ismail, M.A.H. Recent technology for food and beverage quality assessment: A review. J. Food Sci. Technol. 2022, 60, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Haff, R.P.; Toyofuku, N. X-ray detection of defects and contaminants in the food industry. Sens. Instrum. Food Qual. Saf. 2008, 2, 262–273. [Google Scholar] [CrossRef]
- Gowen, A.A.; Tiwari, B.K.; Cullen, P.J.; McDonnell, K.; O’Donnell, C.P. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 2010, 21, 190–200. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, C.; Zhao, J.; Ouyang, Q. Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. TrAC Trends Anal. Chem. 2013, 52, 261–274. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Songsermpong, S. Microwave processing technology for food safety and quality: A review. Agric. Nat. Resour. 2022, 56, 57–72. [Google Scholar] [CrossRef]
- Darwish, A.; Ricci, M.; Zidane, F.; Vasquez, J.A.T.; Casu, M.R.; Lanteri, J.; Migliaccio, C.; Vipiana, F. Physical Contamination Detection in Food Industry Using Microwave and Machine Learning. Electronics 2022, 11, 3115. [Google Scholar] [CrossRef]
- Meng, Z.; Wu, Z.; Gray, J. Microwave sensor technologies for food evaluation and analysis: Methods, challenges and solutions. Trans. Inst. Meas. Control 2017, 40, 3433–3448. [Google Scholar] [CrossRef]
- Bellincontro, A.; Fracas, A.; DiNatale, C.; Esposito, G.; Anelli, G.; Mencarelli, F. Use of Nir Technique to Measure the Acidity and Water Content. Acta Hortic. 2005, 686, 499–504. [Google Scholar] [CrossRef]
- Pannico, A.; Schouten, R.; Basile, B.; Romano, R.; Woltering, E.; Cirillo, C. Non-destructive detection of flawed hazelnut kernels and lipid oxidation assessment using NIR spectroscopy. J. Food Eng. 2015, 160, 42–48. [Google Scholar] [CrossRef]
- Giraudo, A.; Calvini, R.; Orlandi, G.; Ulrici, A.; Geobaldo, F.; Savorani, F. Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control 2018, 94, 233–240. [Google Scholar] [CrossRef]
- Shi, S.; Yuan, S.; Zhou, J.; Jiang, P. Terahertz technology and its applications in head and neck diseases. iScience 2023, 26, 107060. [Google Scholar] [CrossRef]
- Greco, M.; Giovenale, E.; Leccese, F.; Doria, A.; De Francesco, E.; Gallerano, G.P. A THz Imaging Scanner to Monitor Leaf Water Content. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 7–11. [Google Scholar] [CrossRef]
- Greco, M.; Giovenale, E.; Leccese, F.; Doria, A. A Discrimination of Healthy and Rotten Hazelnuts Using a THz Imaging Scanner. In Proceedings of the 2022 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Perugia, Italy, 3–5 November 2021; pp. 229–233. [Google Scholar] [CrossRef]
- Greco, M.; Leccese, F.; Giovenale, E.; Doria, A. Terahertz techniques for better hazelnut quality. Acta IMEKO 2023, 12, 1–8. [Google Scholar] [CrossRef]
- Doria, A.; Gallerano, G.P.; Giovenale, E.; Senni, L.; Greco, M.; Picollo, M.; Cucci, C.; Fukunaga, K.; More, A.C. An Alternative Phase-Sensitive THz Imaging Technique for Art Conservation: History and New Developments at the ENEA Center of Frascati. Appl. Sci. 2020, 10, 7661. [Google Scholar] [CrossRef]
- Doria, A.; Gallerano, G.; Giovenale, E.; Greco, M.; Picollo, M. A Portable THz Imaging System for Art Conservation. In Proceedings of the 2018 First International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Germany, 2–4 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Greco, M.; Giovenale, E.; Leccese, F.; Doria, A. Simulation and Detection of Structural Damage on Polymeric Materials Using a Terahertz Imaging System. In Proceedings of the 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Milan, Italy, 19–21 June 2023; pp. 368–373. [Google Scholar] [CrossRef]
- Greco, M.; Giovenale, E.; Leccese, F.; Doria, A.; De Francesco, E.; Gallerano, G.P. A THz Imaging Scanner to Detect Structural and Fire Damage on Glass Fiber Composite. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022; pp. 384–389. [Google Scholar] [CrossRef]
- Jarrahi, M.; Yardimci, N.T. Method for Identifying Chemical and Structural Variations through Terahertz Time-Domain Spectroscopy. U.S. Patent 17/754,053, 19 January 2023. [Google Scholar]
- Ge, H.; Sun, Z.; Jiang, Y.; Wu, X.; Jia, Z.; Cui, G.; Zhang, Y. Recent Advances in THz Detection of Water. Int. J. Mol. Sci. 2023, 24, 10936. [Google Scholar] [CrossRef]
- Yang, L.; Guo, T.; Zhang, X.; Cao, S.; Ding, X. Toxic chemical compound detection by terahertz spectroscopy: A review. Rev. Anal. Chem. 2018, 37, 20170021. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, R.; Huang, Y.; Xie, L.; Ying, Y. Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control 2018, 97, 100–104. [Google Scholar] [CrossRef]
- Marini, F. Artificial neural networks in foodstuff analyses: Trends and perspectives A review. Anal. Chim. Acta 2009, 635, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Schaller, E.; Bosset, J.O.; Escher, F. ‘Electronic Noses’ and Their Application to Food. LWT Food Sci. Technol. 1998, 31, 305–316. [Google Scholar] [CrossRef]
- Scott, S.M.; James, D.; Ali, Z. Data analysis for electronic nose systems. Microchim. Acta 2006, 156, 183–207. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Brodnjak-Vončina, D.; Kodba, Z.C.; Novič, M. Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids. Chemom. Intell. Lab. Syst. 2005, 75, 31–43. [Google Scholar] [CrossRef]
- Liu, F.; Ye, X.; He, Y.; Wang, L. Application of visible/near infrared spectroscopy and chemometric calibrations for variety discrimination of instant milk teas. J. Food Eng. 2009, 93, 127–133. [Google Scholar] [CrossRef]
- Du, C.-J.; Sun, D.-W. Comparison of three methods for classification of pizza topping using different colour space transformations. J. Food Eng. 2005, 68, 277–287. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Panigrahi, S.; Logue, C.; Gu, H.; Marchello, M. Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng. 2009, 91, 91–98. [Google Scholar] [CrossRef]
- Sun, L.-X.; Danzer, K.; Thiel, G. Classification of wine samples by means of artificial neural networks and discrimination analytical methods. Fresenius’ J. Anal. Chem. 1997, 359, 143–149. [Google Scholar] [CrossRef]
- Beltrán, N.; Duarte-Mermoud, M.; Bustos, M.; Salah, S.; Loyola, E.; Peña-Neira, A.; Jalocha, J. Feature extraction and classification of Chilean wines. J. Food Eng. 2006, 75, 1–10. [Google Scholar] [CrossRef]
- Kruzlicova, D.; Mocak, J.; Balla, B.; Petka, J.; Farkova, M.; Havel, J. Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem. 2009, 112, 1046–1052. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G. Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Anal. Chim. Acta 2004, 509, 159–177. [Google Scholar] [CrossRef]
- García, M.; Aleixandre, M.; Gutiérrez, J.; Horrillo, M.C. Electronic nose for wine discrimination. Sens. Actuators B Chem. 2006, 113, 911–916. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.; Gutiérrez, J.; Horrillo, M. Comparative study of sampling systems combined with gas sensors for wine discrimination. Sens. Actuators B Chem. 2007, 126, 616–623. [Google Scholar] [CrossRef]
- Isa, N.A.M.; Mamat, W.M.F.W. Clustered-Hybrid Multilayer Perceptron network for pattern recognition application. Appl. Soft Comput. 2011, 11, 1457–1466. [Google Scholar] [CrossRef]
- Ragazzosanchez, J.; Chalier, P.; Chevalier, D.; Calderonsantoyo, M.; Ghommidh, C. Identification of different alcoholic beverages by electronic nose coupled to GC. Sens. Actuators B Chem. 2008, 134, 43–48. [Google Scholar] [CrossRef]
- Gawel, R.; Godden, P.W. Evaluation of the consistency of wine quality assessments from expert wine tasters. Aust. J. Grape Wine Res. 2008, 14, 1–8. [Google Scholar] [CrossRef]
- Saurina, J. Characterization of wines using compositional profiles and chemometrics. TrAC Trends Anal. Chem. 2010, 29, 234–245. [Google Scholar] [CrossRef]
- Alcázar, A.; Pablos, F.; Martín, M.J.; González, A.G. Multivariate characterisation of beers according to their mineral content. Talanta 2002, 57, 45–52. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Asan, U.; Ercan, S. An Introduction to Self-Organizing Maps. In Computational Intelligence Systems in Industrial Engineering; Atlantis Computational Intelligence Systems; Kahraman, C., Ed.; Atlantis Press: Paris, France, 2012; Volume 6. [Google Scholar] [CrossRef]
- Holmbom, A.H.; Eklund, T.; Back, B. Customer portfolio analysis using the SOM. Int. J. Bus. Inf. Syst. 2011, 8, 396–412. [Google Scholar] [CrossRef]
- Miljkovic, D. Brief review of self-organizing maps. In Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017. [Google Scholar] [CrossRef]
- Richardson, A.; Risien, C.; Shillington, F. Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr. 2003, 59, 223–239. [Google Scholar] [CrossRef]
Neuron Index | Hazelnuts in Each Neuron | Only Healthy | Only Rotten | Only Shriveled | Only Empty | % Healthy | % Rotten | % Shriveled | % Empty |
---|---|---|---|---|---|---|---|---|---|
1 | 6 | 0 | 4 | 0 | 2 | 70% | 10% | 6% | 14% |
2 | 17 | 17 | 0 | 0 | 0 | ||||
3 | 10 | 1 | 1 | 3 | 5 | ||||
4 | 17 | 17 | 0 | 0 | 0 | ||||
tot | 50 | 35 | 5 | 3 | 7 |
Neuron Index | Hazelnuts in Each Neuron | Only Healthy | Only Rotten | Only Shriveled | Only Empty | % Healthy | % Rotten | % Shriveled | % Empty | Sorting Error |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28 | 0 | 12 | 4 | 12 | 65.43% | 12.34% | 5.55% | 16.66% | 0.6% |
2 | 105 | 105 | 0 | 0 | 0 | |||||
3 | 27 | 0 | 7 | 5 | 15 | |||||
4 | 2 | 1 | 1 | 0 | 0 | |||||
tot | 162 | 106 | 20 | 9 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, M.; Giarnetti, S.; Giovenale, E.; Taschin, A.; Leccese, F.; Doria, A.; Senni, L. THz Data Analysis and Self-Organizing Map (SOM) for the Quality Assessment of Hazelnuts. Appl. Sci. 2024, 14, 1555. https://doi.org/10.3390/app14041555
Greco M, Giarnetti S, Giovenale E, Taschin A, Leccese F, Doria A, Senni L. THz Data Analysis and Self-Organizing Map (SOM) for the Quality Assessment of Hazelnuts. Applied Sciences. 2024; 14(4):1555. https://doi.org/10.3390/app14041555
Chicago/Turabian StyleGreco, Manuel, Sabino Giarnetti, Emilio Giovenale, Andrea Taschin, Fabio Leccese, Andrea Doria, and Luca Senni. 2024. "THz Data Analysis and Self-Organizing Map (SOM) for the Quality Assessment of Hazelnuts" Applied Sciences 14, no. 4: 1555. https://doi.org/10.3390/app14041555
APA StyleGreco, M., Giarnetti, S., Giovenale, E., Taschin, A., Leccese, F., Doria, A., & Senni, L. (2024). THz Data Analysis and Self-Organizing Map (SOM) for the Quality Assessment of Hazelnuts. Applied Sciences, 14(4), 1555. https://doi.org/10.3390/app14041555