The Dynamic Characteristics of Railway Portal Frame Bridges: A Comparison between Measurements and Calculations
Abstract
:1. Introduction
2. Modelling of Soil–Structure Interaction
2.1. Fundamentals of Soil–Structure Interaction
2.2. Numerical Modelling of Soil–Structure Interaction
- Direct Method:The near field is modelled using the FEM and the far field (Sommerfeld radiation condition) is implemented using artificial boundary conditions. (Figure 2b);
- Substructure Method:
2.3. Introduction to Structure–Soil–Structure Interaction
3. Calculation Model
3.1. Development of Simplified Approaches
3.2. Application Limits
3.3. Modelling
3.4. Validation
4. In Situ Testing
4.1. Concept and Methodology
4.2. Evaluation and Assessment
4.2.1. Description of the Structure
4.2.2. Identification of Natural Frequencies
4.2.3. Identification of Modal Damping
4.3. Dynamic Characteristics of In Situ Testing
Bridge | L [m] | ${\mathit{f}}_{1}$ [Hz] | ${\mathit{f}}_{2}$ [Hz] | ${\mathit{\zeta}}_{1}$ [%] | ${\mathit{V}}_{\mathit{s}}$ [m/s] | Limitation |
---|---|---|---|---|---|---|
Ambient | Ambient | Mean | ${\mathit{a}}_{\mathbf{0}}$ | |||
12,842 | 17 | 10.1 | 14.7 | 6.4 | 358 | $0.90<{a}_{0,G}$ |
12,836 | 17 | 10.1 | 14.9 | 5.9 | 485 | $0.66<{a}_{0,G}$ |
12,829 | 9.5 | 21.8 | 25.7 | 10.9 | 246 | $2.85>{a}_{0,G}$ |
13,871 | 9.5 | 21.3 | 25.6 | 11 | 600 | $1.08>{a}_{0,G}$ |
5. Comparison of Calculation and Reality
5.1. Assumptions and Calculation
5.2. Results
5.3. Summary of the Dynamic Characteristics
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ERRI D214. Rail Bridges for Speeds > 200 km/h. Final Report. Part (a): Abschlussbericht; Synthesis of the Results of D 214 Research; European Rail Research Institute: Utrecht, The Netherlands, 1999. [Google Scholar]
- Baeßler, M. Lageveränderungen des Schottergleises Durch Zyklische und Dynamische Beanspruchungen. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2008. [Google Scholar]
- Deutsches Institut für Normung e.V. (DIN). Einwirkungen auf Tragwerke-Teil 2: Verkehrslasten auf Brücken; DIN EN 1991-2:2010-12, Eurocode 1; Beuth Verlag GmbH: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- DB Netz AG. Eisenbahnbrücken (und Sonstige Ingenieurbauwerke) Planen, Bauen und Instand Halten; RIL 804; DB Netz AG: Berlin, Germany, 2013. [Google Scholar]
- Kohl, A.M.; Vospernig, M.; Kwapisz, M.; Grunert, G.; Firus, A.; Schneider, J. Neues Hochgeschwindigkeitslastmodell für Eisenbahnbrücken—Teil 2: Auswahl repräsentativer Fahrzeuge. In Baudynamik; VDI-Berichte, VDI Verlag GmbH: Düsseldorf, Germany, 2022; pp. 81–94. [Google Scholar] [CrossRef]
- Kohl, A.M.; Clement, K.D.; Schneider, J.; Firus, A.; Lombaert, G. An investigation of dynamic vehicle-bridge interaction effects based on a comprehensive set of trains and bridges. Eng. Struct. 2023, 279, 115555. [Google Scholar] [CrossRef]
- Hirzinger, B.; Adam, C.; Salcher, P. Dynamic response of a non-classically damped beam with general boundary conditions subjected to a moving mass-spring-damper system. Int. J. Mech. Sci. 2020, 185, 105877. [Google Scholar] [CrossRef]
- Zangeneh, A.; Svedholm, C.; Andersson, A.; Pacoste, C.; Karoumi, R. Identification of soil-structure interaction effect in a portal frame railway bridge through full-scale dynamic testing. Eng. Struct. 2018, 159, 299–309. [Google Scholar] [CrossRef]
- Zangeneh Kamali, A. Dynamic Soil-Structure Interaction Analysis of High-Speed Railway Bridges: Efficient Modeling Techniques and Experimental Testing: Doctoral Thesis in Structural Engineering and Bridges; TRITA-ABE-DLT; KTH Royal Institute of Technology: Stockholm, Sweden, 2021; Volume 2121. [Google Scholar]
- Bigelow, H.; Pak, D.; Hoffmeister, B.; Feldmann, M.; Seidl, G.; Petraschek, T. Soil-structure interaction at railway bridges with integral abutments. Procedia Eng. 2017, 199, 2318–2323. [Google Scholar] [CrossRef]
- Marx, S.; Geißler, K. Erfahrungen zur Modellierung und Bewertung von Eisenbahnbrücken mit Resonanzrisiko. Stahlbau 2010, 79, 188–198. [Google Scholar] [CrossRef]
- Heiland, T.; Aji, H.D.; Wuttke, F.; Stempniewski, L.; Stark, A. Influence of soil-structure interaction on the dynamic characteristics of railroad frame bridges. Soil Dyn. Earthq. Eng. 2023, 167, 107800. [Google Scholar] [CrossRef]
- Heiland, T.; Hägle, M.; Triantafyllidis, T.; Stempniewski, L.; Stark, A. Stiffness contributions of ballast in the context of dynamic analysis of short span railway bridges. Constr. Build. Mater. 2022, 360, 129536. [Google Scholar] [CrossRef]
- Reiterer, M.; Bruschetini-Ambro, S.Z. Dynamik von Eisenbahnbrücken: Diskrepanz zwischen Messung und Berechnung. Bauingenieur 2019, 94, 9–21. [Google Scholar] [CrossRef]
- Dobry, R.; Gazetas, G. Dynamic Response of Arbitrarily Shaped Foundations. J. Geotech. Eng. 1986, 112, 109–135. [Google Scholar] [CrossRef]
- Studer, J.A.; Koller, M.G.; Laue, J. Bodendynamik: Grundlagen, Kennziffern, Probleme und Lösungsansätze; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Vrettos, C. Bodendynamik. In Grundbau-Taschenbuch; Witt, K.J., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 451–500. [Google Scholar] [CrossRef]
- Lysmer, J. Vertical Motion of Rigid Footings; University of Michigan: Ann Arbor, MI, USA, 1965. [Google Scholar]
- Wolf, J.P. Foundation Vibration Analysis Using Simple Physical Models; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Gazetas, G. Foundation Vibrations. In Foundation Engineering Handbook; Fang, H.Y., Ed.; Springer: Boston, MA, USA, 1991; pp. 553–593. [Google Scholar] [CrossRef]
- Pais, A.; Kausel, E. Approximate formulas for dynamic stiffnesses of rigid foundations. Soil Dyn. Earthq. Eng. 1988, 7, 213–227. [Google Scholar] [CrossRef]
- Petersen, C. Dynamik der Baukonstruktionen; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Deutsche Gesellschaft für Geotechnik e.V. Empfehlungen des Arbeitskreises “Baugrunddynamik”, 1st ed.; Ernst, Wilhelm & Sohn: Berlin, Germany, 2017. [Google Scholar]
- Triantafyllidis, T. Dynamic stiffness of rigid rectangular foundations on the half-space. Earthq. Eng. Struct. Dyn. 1986, 14, 391–411. [Google Scholar] [CrossRef]
- Wong, H.L.; Luco, J.E. Dynamic response of rigid foundations of arbitrary shape. Earthq. Eng. Struct. Dyn. 1976, 4, 579–587. [Google Scholar] [CrossRef]
- Gazetas, G. Analysis of machine foundation vibrations: State of the art. Int. J. Soil Dyn. Earthq. Eng. 1983, 2, 2–42. [Google Scholar] [CrossRef]
- Eringen, A.C. Elastodynamics, Volume 2: Linear Theory; Elsevier Science: Burlington, MA, USA, 1975. [Google Scholar]
- Gazetas, G.; Dobry, R.; Tassoulas, J.L. Vertical response of arbitrarily shaped embedded foundations. J. Geotech. Eng. 1985, 111, 750–771. [Google Scholar] [CrossRef]
- Aji, H.D.B. Hybrid BEM-FEM for 2D and 3D Dynamic Soil-Structure Interaction Considering Arbitrary Layered Half-Space and Nonlinearities. Ph.D. Thesis, CAU, Kiel, Germany, 2023. [Google Scholar] [CrossRef]
- Studer, J.A.; Koller, M.G.; Laue, J. Bodendynamik; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Stempniewski, L.; Haag, B. Baudynamik-Praxis: Mit Zahlreichen Anwendungsbeispielen, 1st ed.; Bauwerk-Verl.: Berlin, Germany, 2010. [Google Scholar]
- Mulliken, J.S.; Karabalis, D.L. Discrete model for dynamic through-the-soil coupling of 3-D foundations and structures. Earthq. Eng. Struct. Dyn. 1998, 27, 687–710. [Google Scholar] [CrossRef]
- Wolf, J.P.; Meek, J.W. Insight on 2D- versus 3D-modelling of surface foundations via strength-of-materials solutions for soil dynamics. Earthq. Eng. Struct. Dyn. 1994, 23, 91–112. [Google Scholar] [CrossRef]
- Aji, H.D.B.; Basnet, M.B.; Wuttke, F. Numerical modelling of the dynamic behavior of an integral bridge via coupled BEM-FEM. In Proceedings of the 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik, Innsbruck, Austria, 26–27 September 2021. [Google Scholar]
- Aji, H.D.B.; Wuttke, F.; Dineva, P. 3D hybrid model of foundation-soil-foundation dynamic interaction. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 2021, 101, e202000351. [Google Scholar] [CrossRef]
- Hackenberg, M. A Coupled Integral Transform Method-Finite Element Method Approach to Model the Soil-Structure-Interaction. Ph.D. Thesis, Technische Universität München, München, Germany, 2017. [Google Scholar]
- Wolf, J.P. Soil-structure-interaction analysis in time domain. Nucl. Eng. Des. 1989, 111, 381–393. [Google Scholar] [CrossRef]
- Vucetic, M. Cyclic Threshold Shear Strains in Soils. J. Geotech. Eng. 1994, 120, 2208–2228. [Google Scholar] [CrossRef]
- Wichtmann, T.; Triantafyllidis, T. Dynamische Steifigkeit und Dämpfung von Sand bei kleinen Dehnungen. Bautechnik 2005, 82, 236–246. [Google Scholar] [CrossRef]
- Abaqus CAE 2020; Dassault Systemes Simulia Corporation. Available online: https://www.3ds.com/products/simulia/abaqus (accessed on 15 January 2024).
- Dal Moro, G. Surface Wave Analysis for Near Surface Applications; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Dal Moro, G. Efficient Joint Analysis of Surface Waves and Introduction to Vibration Analysis; Springer International Publishing AG: Cham, Switzerland, 2020. [Google Scholar]
- Nasdala, L. FEM-Formelsammlung Statik und Dynamik; Springer: Wiesbaden, Germany, 2015. [Google Scholar] [CrossRef]
- Stollwitzer, A.; Fink, J. Verfahren zur Reduktion der Ergebnisstreuung zur Ermittlung realistischer Lehr’scher Dämpfungsmaße von Eisenbahnbrücken—Teil 2: Methoden im Zeitbereich. Bauingenieur 2022, 97, 341–352. [Google Scholar] [CrossRef]
- Stollwitzer, A.; Fink, J.; Mohamed, E. Verfahren zur Reduktion der Ergebnisstreuung zur Ermittlung realistischer Lehr’scher Dämpfungsmaße von Eisenbahnbrücken—Teil 1: Methoden im Frequenzbereich. Bauingenieur 2022, 97, 153–164. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberl, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Python 3.; Python Software Foundation. Available online: https://www.python.org/ (accessed on 15 January 2024).
- ARTeMIS Modal; Structural Vibration Solutions A/S, Aalborg East, Denmark, 2021. Python 3. Available online: https://www.svibs.com/ (accessed on 15 January 2024).
- Brincker, R.; Andersen, P. Understanding Stochastic Subspace Identification. In Proceedings of the Conference Proceedings: IMAC-XXIV: A Conference & Exposition on Structural Dynamics, St. Louis, MO, USA, 30 January–2 February 2006. [Google Scholar]
- Mallat, S.G. A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2009. [Google Scholar]
- Heiland, T.; Thomas, L.; Galiazzo, M.; Stempniewski, L.; Stark, A. Auswirkungen der ebenen Boden-Bauwerk-Interaktion auf die Eigenfrequenz von Eisenbahnrahmenbrücken. Bauingenieur 2022, 97, 141–152. [Google Scholar] [CrossRef]
- CEN TC250. CEN TC250/TR xxxxx:2023_InBridge4EU, Scheduled for Publication. Available online: https://eurocodes.jrc.ec.europa.eu/policies-standards/centc250-structural-eurocodes (accessed on 15 January 2024).
- Goris, A. (Ed.) Bautabellen für Ingenieure: Mit Berechnungshinweisen und Beispielen, 20th ed.; Werner: Neuwied, Germany, 2012. [Google Scholar]
- Korda, F.; Mistler, M. Brückenmessungen bei Nürnberg: Dokumentation der Brückenmessung und Untersuchung der dynamischen Bodeneigenschaften; Baudynamik Heiland & Mistler GmbH: Bochum, Germany, 2022. [Google Scholar]
- FIB. Model Code for Concrete Structures 2010: Model Code 2010; Ernst & Sohn Publishing House: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Ziegler, A. Bauwerksdynamik und Erschütterungsmessungen; Springer: Wiesbaden, Germany, 2017. [Google Scholar] [CrossRef]
- Heiland, T.; Hofmann, F.; Stempniewski, L. Eine Grenzwertbetrachtung über die Auswirkungen des dynamischen E-Moduls auf die Eigenfrequenzen bei Eisenbahnrahmenbrücken. In Proceedings of the 17. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik, Online, 16–17 September 2021. [Google Scholar]
Bridge | L | d | ${\mathit{t}}_{\mathbf{WDL}}$ | ${\mathit{A}}_{\mathit{B}}$ |
---|---|---|---|---|
[ID] | [m] | [m] | [m] | [m^{2}] |
12,842 | 17 | 1 | 1 | 84 |
12,836 | 17 | 1 | 1 | 84 |
12,829 | 9.5 | 0.6 | 0.8 | 75 |
13,871 | 9.5 | 0.6 | 0.8 | 64 |
${\mathit{f}}_{1}$ [Hz]/$\mathit{\zeta}$ [%] | ${\mathit{f}}_{2}$ [Hz] | ${\mathit{f}}_{3}$ [Hz] | ${\mathit{f}}_{4}$ [Hz] | |
---|---|---|---|---|
Calculation Model | 9.9/6.9 | 13.8 | 25 | 28.3 |
In situ test (ambient) | 10.1/6.4 | 14.7 | 25 | 28 |
Deviation [%] | 2/7 | 6 | 0 | 1 |
Bridge | L [m] | ${\mathit{f}}_{1}$ [Hz] | ${\mathit{f}}_{2}$ [Hz] | ${\mathit{\zeta}}_{1}$ [%] | ${\mathit{a}}_{0}$ |
---|---|---|---|---|---|
Numeric/In Situ | Numeric/In Situ | Numeric/In Situ | |||
12,842 | 17 | 9.9/10.1 | 13.8/14.7 | 6.9/6.4 | $0.90<{a}_{0,G}$ |
12,836 | 17 | 10/10.1 | 13.8/14.9 | 4.2/5.9 | $0.66<{a}_{0,G}$ |
12,829 | 9.5 | 22.4/21.8 | 24.8/25.7 | 8.5/10.9 | $2.85>{a}_{0,G}$ |
13,871 | 9.5 | 23.7/21.3 | 25.5/25.6 | 5.3/11 | $1.08>{a}_{0,G}$ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiland, T.; Stempniewski, L.; Stark, A. The Dynamic Characteristics of Railway Portal Frame Bridges: A Comparison between Measurements and Calculations. Appl. Sci. 2024, 14, 1493. https://doi.org/10.3390/app14041493
Heiland T, Stempniewski L, Stark A. The Dynamic Characteristics of Railway Portal Frame Bridges: A Comparison between Measurements and Calculations. Applied Sciences. 2024; 14(4):1493. https://doi.org/10.3390/app14041493
Chicago/Turabian StyleHeiland, Till, Lothar Stempniewski, and Alexander Stark. 2024. "The Dynamic Characteristics of Railway Portal Frame Bridges: A Comparison between Measurements and Calculations" Applied Sciences 14, no. 4: 1493. https://doi.org/10.3390/app14041493