The Effects of Plyometric Training on the Performance of Three Types of Jumps and Jump Shots in College-Level Male Basketball Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Research Tools and Variables
2.3.1. Research Tools
2.3.2. Research Variables
2.4. Test Method
2.4.1. Vertical Jump Test
2.4.2. Lateral Jump Test
2.4.3. Horizontal Jump Test
2.4.4. Sports Injury Rate Test
2.4.5. Sports Performance Test
2.5. Control Variables
2.6. Statistical Analysis
3. Results
3.1. Vertical Jump Dynamics Analysis
3.2. Analysis of Lateral Jump Dynamics
3.3. Horizontal Jump Dynamics Analysis
3.4. Analysis of Differences in Three Jumping Abilities
3.5. Sports Performance Analysis
3.6. Analysis of Sports Injury Rate
4. Discussion
4.1. PTP and Jumping Ability
4.2. Analysis of Three Types of Jump Dynamics
4.3. Kinetic Differences in Three Types of Jumps
4.4. PT and Sports Injury Prevention
4.5. Integration of PT into Practical Training
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrera-Domínguez, F.J.; Carmona-Gómez, A.; Tornero-Quiñones, I.; Sáez-Padilla, J.; Sierra-Robles, Á.; Molina-López, J. Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A between-Sports Comparison in Basketball and Handball Athletes. Int. J. Environ. Res. Public Health 2021, 18, 1866. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, R.; Shalom, A.; Calleja-Gonzalez, J. Physiology of Basketball—Field Tests. Review Article. J. Hum. Kinet. 2021, 77, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Liu, J.; Wang, Z.; Geok, S.K. The effects of functional training on physical fitness and skill-related performance among basketball players: A systematic review. Front. Physiol. 2024, 15, 1391394. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, B.; Wąż, P.; Zorena, K. Impact of Three Strengthening Exercises on Dynamic Knee Valgus and Balance with Poor Knee Control among Young Football Players: A Randomized Controlled Trial. Healthcare 2021, 9, 558. [Google Scholar] [CrossRef]
- Kondo, H. Changes in the Ground Reaction Force, Lower-Limb Muscle Activity, and Joint Angles in Athletes with Unilateral Ankle Dorsiflexion Restriction During A Rebound-Jump Task. J. Funct. Morphol. Kinesiol. 2018, 3, 52. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Eserhaut, D.A.; Fry, A.C.; Cabarkapa, D.V.; Philipp, N.M.; Whiting, S.M.; Downey, G.G. Relationship between Upper and Lower Body Strength and Basketball Shooting Performance. Sports 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Aksović, N.; Bubanj, S.; Bjelica, B.; Kocić, M.; Lilić, L.; Zelenović, M.; Stanković, D.; Milanović, F.; Pajović, L.; Čaprić, I.; et al. Sports Injuries in Basketball Players: A Systematic Review. Life 2024, 14, 898. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, C.V.; Chiaramonti, B.C.; Biruel, E.P.; Pochini, A.d.C.; Ejnisman, B.; Cohen, M. Epidemiology of sports injuries in basketball: Integrative systematic review. BMJ Open Sport—Exerc. Med. 2018, 4, e000468. [Google Scholar] [CrossRef] [PubMed]
- Tummala, S.V.; Morikawa, L.; Brinkman, J.; Crijns, T.J.; Economopoulos, K.; Chhabra, A. Knee Injuries and Associated Risk Factors in National Basketball Association Athletes. Arthrosc. Sports Med. Rehabil. 2022, 4, e1639–e1645. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Soh, K.G.; Zhao, Y.; Soh, K.L.; Sun, H.; Nasiruddin, N.J.M.; Zhai, X.; Ma, L. Effect of core training on athletic and skill performance of basketball players: A systematic review. PLoS ONE 2023, 18, e0287379. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, Z.; Huang, Z.; Yang, Q.; Gao, C.; Ji, H.; Sun, J.; Li, D. Meta-Analysis of the Effects of Plyometric Training on Lower Limb Explosive Strength in Adolescent Athletes. Int. J. Environ. Res. Public Health 2023, 20, 1849. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Gómez-Ruano, M.; Memmert, D.; Li, C.; Fu, M. Effects of plyometric training on kicking performance in soccer players: A systematic review and meta-analysis. Front. Physiol. 2023, 14, 1072798. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.J.; Riemann, B.L. Current concepts of plyometric exercises for the lower extremity. In Return to Sport After ACL Reconstruction and Other Knee Operations; Springer: Berlin/Heidelberg, Germany, 2019; pp. 277–304. [Google Scholar] [CrossRef]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of Plyometric Training on Physical Fitness in Team Sport Athletes: A Systematic Review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Kurt, C.; Canli, U.; Erdaş, S.; Poli, L.; Carvutto, R.; Cataldi, S.; Fischetti, F.; Greco, G. Effectiveness of Vertical versus Horizontal Plyometric Training on Stretch-Shortening Cycle Performance Enhancement in Adolescent Soccer Players. Healthcare 2023, 11, 1615. [Google Scholar] [CrossRef]
- Soto García, D.; Díaz Cruz, J.; Bautista, I.J.; Martínez Martín, I. Effects of a Strength Training Protocol with Self-loading and Plyometry on Handball Physical Performance: First National Female Category. E-balonmano com J. Sports Sci. 2023, 18, 83–92. [Google Scholar] [CrossRef]
- Caamaño-Navarrete, F.; Delgado-Floody, P.; Martinez-Salazar, C.; Jerez-Mayorga, D. Speed and throwing the ball are related to jump capacity and skeletal muscle mass in university basketball players. J. Sports Med. Phys. Fitness 2021, 61, 771–778. [Google Scholar] [CrossRef]
- Lee, H.M.; Oh, S.; Kwon, J.W. Effect of Plyometric versus Ankle Stability Exercises on Lower Limb Biomechanics in Taekwondo Demonstration Athletes with Functional Ankle Instability. Int. J. Environ. Res. Public Health 2020, 17, 3665. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Ramirez-Campillo, R.; Moscão, J.; Rocha, T.; Zacca, R.; Martins, A.; Milheiro, A.A.; Ferreira, J.; Sarmento, H.; Clemente, F.M. Strength Training versus Stretching for Improving Range of Motion: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 427. [Google Scholar] [CrossRef]
- Gu, H.; Yao, J.; Zhou, L.; Cheung, A.; Abrami, P. A Quasi-Experimental Study of a Web-Based English Literacy Tool for Grade 3 Students in China. ECNU Rev. Educ. 2020, 4, 209653112097270. [Google Scholar] [CrossRef]
- Mills, G.E.; Gay, L.R. Education Research: Competencies for Analysis and Applications; Pearson Education: London, UK, 2016. [Google Scholar]
- Martínez-Mesa, J.; González-Chica, D.A.; Bastos, J.L.; Bonamigo, R.R.; Duquia, R.P. Sample size: How many participants do I need in my research? An. Bras. Dermatol. 2014, 89, 609–615. [Google Scholar] [CrossRef]
- Fischetti, F.; Vilardi, A.D.; Cataldi, S.; Greco, G. Effects of Plyometric Training Program on Speed and Explosive Strength of Lower Limbs in Young Athletes. J. Phys. Educ. Sport 2018, 18, 2476–2482. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Shephard, R.J.; Chelly, M.S. Effects of Contrast Strength vs. Plyometric Training on Lower-Limb Explosive Performance, Ability to Change Direction and Neuromuscular Adaptation in Soccer Players. J. Strength. Cond. Res. 2019, 33, 2094–2103. [Google Scholar] [CrossRef]
- Fathi, A.; Hammami, R.; Moran, J.; Borji, R.; Sahli, S.; Rebai, H. Effect of a 16-Week Combined Strength and Plyometric Training Program Followed by a Detraining Period on Athletic Performance in Pubertal Volleyball Players. J. Strength. Cond. Res. 2019, 33, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Castillo, D.; Raya-González, J.; Moran, J.; de Villarreal, E.S.; Lloyd, R.S. Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 2125–2143. [Google Scholar] [CrossRef] [PubMed]
- Kapsis, D.P.; Tsoukos, A.; Psarraki, M.P.; Douda, H.T.; Smilios, I.; Bogdanis, G.C. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports 2022, 10, 7. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef]
- Cigerci, A.E.; Genc, H. The effect of strength training with different frequency on untrained university students. Phys. Educ. Stud. 2020, 24, 186–193. [Google Scholar] [CrossRef]
- Camargo, L.D.R.; Doneda, D.; Oliveira, V.R. Whey protein ingestion in elderly diet and the association with physical, performance and clinical outcomes. Exp. Gerontol. 2020, 137, 110936. [Google Scholar] [CrossRef]
- Wang, X.; Soh, K.G.; Samsudin, S.; Deng, N.; Liu, X.; Zhao, Y.; Akbar, S. Effects of high-intensity functional training on physical fitness and sport-specific performance among the athletes: A systematic review with meta-analysis. PLoS ONE 2023, 18, e0295531. [Google Scholar] [CrossRef]
- Lee, C.H.; Sun, T.L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthropol. 2018, 37, 27. [Google Scholar] [CrossRef] [PubMed]
- Sannicandro, I.; Cofano, G.; Piccinno, A. Can the Core Stability Training Influences Sprint and Jump Performances in Young Basketball Players? Adv. Phys. Educ. 2020, 10, 196–206. [Google Scholar] [CrossRef]
- Fatahi, F.; Ghasemi, G.; Karimi, M.; Beyranvand, R. The effect of eight weeks of core stability training on the lower extremity joints moment during single-leg drop landing article. Balt. J. Health Phys. Act. 2019, 11, 34–44. [Google Scholar] [CrossRef]
- Struzik, A.; Pietraszewski, B.; Zawadzki, J. Biomechanical analysis of the jump shot in basketball. J. Hum. Kinet. 2014, 42, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Lagisz, M.; Yang, Y.; Drobniak, S.M. Finding the right power balance: Better study design and collaboration can reduce dependence on statistical power. PLoS Biol. 2024, 22, e3002423. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Liew, B.; Ramirez-Campillo, R.; Granacher, U.; Negra, Y.; Chaabene, H. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: A meta-analytical comparison. J. Sport. Health Sci. 2023, 12, 236–245. [Google Scholar] [CrossRef]
- Caron, K.E.; Burr, J.F.; Power, G.A. The Effect of a Stretch-Shortening Cycle on Muscle Activation and Muscle Oxygen Consumption: A Study of History-Dependence. J. Strength. Cond. Res. 2020, 34, 3139–3148. [Google Scholar] [CrossRef]
- Voisin, M.; Scohier, M. Effect of an 8-Week Plyometric Training Program with Raised Forefoot Platforms on Agility and Vertical Jump Performance. Int. J. Exerc. Sci. 2019, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chen, J.; Dai, J.; Zhang, W.; Chen, L.; Sun, J.; Gao, X.; Song, J.; Shen, H. Exploring the potent enhancement effects of plyometric training on vertical jumping and sprinting ability in sports individuals. Front. Physiol. 2024, 15, 1435011. [Google Scholar] [CrossRef] [PubMed]
- Uysal, H.; Dalkıran, O.; Korkmaz, S.; Akyildiz, Z.; Nobari, H.; Clemente, F. The Effect of Combined Strength Training on Vertical Jump Performance in Young Basketball Players: A Systematic Review and Meta-Analysis. Strength Cond. J. 2023, 45, 554–567. [Google Scholar] [CrossRef]
- Gisladottir, T.; Petrović, M.; Sinković, F.; Novak, D. The relationship between agility, linear sprinting, and vertical jumping performance in U-14 and professional senior team sports players. Front. Sports Act. Living 2024, 6, 1385721. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; García-Hermoso, A.; Moran, J.; Chaabene, H.; Negra, Y.; Scanlan, A.T. The effects of plyometric jump training on physical fitness attributes in basketball players: A meta-analysis. J. Sport Health Sci. 2022, 11, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Aztarain-Cardiel, K.; López-Laval, I.; Marco-Contreras, L.A.; Sánchez-Sabaté, J.; Garatachea, N.; Pareja-Blanco, F. Effects of Plyometric Training Direction on Physical Performance in Basketball Players. Int. J. Sports Physiol. Perform. 2023, 18, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Le Pellec, A.; Maton, B. Initiation of a vertical jump: The human body’s upward propulsion depends on control of forward equilibrium. Neurosci. Lett. 2002, 323, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Reiter, C.R.; Killelea, C.; Faherty, M.S.; Zerega, R.J.; Westwood, C.; Sell, T.C. Force-plate derived predictors of lateral jump performance in NCAA Division-I men’s basketball players. PLoS ONE 2023, 18, e0284883. [Google Scholar] [CrossRef] [PubMed]
- Cooley, C.; Simonson, S.R.; Maddy, D.A. The Force-Vector Theory Supports Use of the Laterally Resisted Split Squat to Enhance Change of Direction. J. Strength. Cond. Res. 2024, 38, 835–841. [Google Scholar] [CrossRef]
- Hernández-Davó, J.L.; Loturco, I.; Pereira, L.A.; Cesari, R.; Pratdesaba, J.; Madruga-Parera, M.; Sanz-Rivas, D.; Fernández-Fernández, J. Relationship between Sprint, Change of Direction, Jump, and Hexagon Test Performance in Young Tennis Players. J. Sports Sci. Med. 2021, 20, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Clemente, F.M.; Vali, N.; Silva, A.F.; van den Hoek, D.; Ramirez-Campillo, R. Effects of horizontal compared to vertical-based plyometric jump training on semi-professional soccer player’s performance. Sci. Rep. 2023, 13, 10039. [Google Scholar] [CrossRef] [PubMed]
- Nagano, A.; Komura, T.; Fukashiro, S. Optimal coordination of maximal-effort horizontal and vertical jump motions--a computer simulation study. Biomed. Eng. Online 2007, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Nassis, G.P.; Chen, S.; Shi, Y.; Li, F. Not Lower-Limb Joint Strength and Stiffness but Vertical Stiffness and Isometric Force-Time Characteristics Correlate With Running Economy in Recreational Male Runners. Front. Physiol. 2022, 13, 940761. [Google Scholar] [CrossRef] [PubMed]
- McErlain-Naylor, S.A.; Beato, M. Factors influencing the jump momentum—Sprint momentum correlation: A data simulation. Eur. J. Sport. Sci. 2022, 22, 1847–1855. [Google Scholar] [CrossRef]
- Miyaguchi, K.; Sugiura, H.; Demura, S. Possibility of stretch-shortening cycle movement training using a jump rope. J. Strength. Cond. Res. 2014, 28, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; Deklerk, M. Single-leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength. Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef]
- Laffaye, G.; Wagner, P.P.; Tombleson, T.I. Countermovement jump height: Gender and sport-specific differences in the force-time variables. J. Strength. Cond. Res. 2014, 28, 1096–1105. [Google Scholar] [CrossRef]
- Meylan, C.M.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J. Sports Sci. 2010, 28, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.; Andrew, S.; Mathew, O.G.; Matthew, M.; Warren, Y. The Occurrence of Different Vertical Jump Types in Basketball Competition and their Relationship with Lower-Body Speed-Strength Qualities. Int. J. Strength Cond. 2021, 1. [Google Scholar] [CrossRef]
- Wakai, M.; Linthorne, N.P. Optimum take-off angle in the standing long jump. Hum. Mov. Sci. 2005, 24, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Stone, M.H. The Relationships between Hip and Knee Extensor Cross-Sectional Area, Strength, Power, and Potentiation Characteristics. Sports 2017, 5, 66. [Google Scholar] [CrossRef]
- dos Santos, M.L.; Berton, R.; Shields, J.; Bishop, C.; Dinyer-McNeely, T.; Anderson, O.; Dawes, J. Influence of Box Height on Inter-Limb Asymmetry and Box Jump Performance. Symmetry 2023, 15, 1359. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Bakhsh, J.M.; Khaledi, E.H.; Ghulam, H.; Sanders, R.H. Injury prevention programs that include plyometric exercises reduce the incidence of anterior cruciate ligament injury: A systematic review of cluster randomised trials. J. Physiother. 2022, 68, 255–261. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, M.; Wang, X.; Xu, Q. Unilateral Plyometric Jump Training Shows Significantly More Effective than Bilateral Training in Improving Both Time to Stabilization and Peak Landing Force in Single-Leg Lend and Hold Test: A Randomized Multi-Arm Study Conducted Among Young Male Basketball Players. J. Sports Sci. Med. 2024, 23, 647–655. [Google Scholar] [CrossRef]
- Ho, I.; Wong, S.T.; Yong, J.; Fang, H. Plyometric stress index: A novel method for quantifying plyometric training French “L’indice d’intensité pliométrique: Une nouvelle méthode pour quantifier l’entraînement pliométrique”. Sci. Sports 2022, 37, 788–797. [Google Scholar] [CrossRef]
- Lee, J.; Martin, J.; Wildehain, R.; Ambegaonkar, J. Plyometrics or balance training effects on lower body power, balance and reactive agility in collegiate basketball athletes: A randomized control trial. Turk. J. Sports Med. 2020, 56, 005–012. [Google Scholar] [CrossRef]
- Watkins, C.M.; Storey, A.G.; McGuigan, M.R.; Gill, N.D. Implementation and Efficacy of Plyometric Training: Bridging the Gap Between Practice and Research. J. Strength. Cond. Res. 2021, 35, 1244–1255. [Google Scholar] [CrossRef]
- Marta, C.; Alves, A.R.; Casanova, N.; Neiva, H.P.; Marinho, D.A.; Izquierdo, M.; Nunes, C.; Marques, M.C. Suspension vs. Plyometric Training in Children’s Explosive Strength. J. Strength. Cond. Res. 2022, 36, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Kons, R.L.; Orssatto, L.B.R.; Ache-Dias, J.; De Pauw, K.; Meeusen, R.; Trajano, G.S.; Dal Pupo, J.; Detanico, D. Effects of Plyometric Training on Physical Performance: An Umbrella Review. Sports Med. Open 2023, 9, 4. [Google Scholar] [CrossRef]
Variable | EG (n = 15) M ± SD | CG (n = 15) M ± SD | 95% Confidence Interval | t-Value | p-Value | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Age (years) | 22 ± 1.06 | 22 ± 1.08 | −0.70 | 0.69 | −0.021 | 0.984 |
Height (cm) | 177.5 ± 3.78 | 177.6 ± 4.05 | −2.65 | 2.04 | −0.281 | 0.783 |
Weight (kg) | 74.5 ± 8.91 | 74.5 ± 6.90 | −6.38 | 6.32 | −0.009 | 0.993 |
Years of athletic experience | 9.25 ± 1.15 | 9.28 ± 1.28 | −0.74 | 0.69 | −0.080 | 0.937 |
Number of sports injuries (%) | 22 ± 12.06 | 26 ± 14.73 | −8.05 | 15.83 | 0.698 | 0.496 |
Content | Reps/Set |
---|---|
Warm-up | Warm-up with 10 min of aerobic exercise. |
Dead lift | Barbell (10 kg) + weight plates (20 kg) = 30 kg, 15 reps (Set 1) Barbell (10 kg) + weight plates (30 kg) = 40 kg, 10 reps (Set 2) Barbell (10 kg) + weight plates (40 kg) = 50 kg, 1 to 5 reps (Set 3) |
Skater hops | 15 reps each on the left and right (Set 1 to Set 3) |
Lateral shuffle | 15 reps each on the left and right (Set 1 to Set 3) |
Jumping lunges with dumbbells | Dumbbell (6 kg) in each hand, 12 reps (Set 1) Dumbbell (8 kg) in each hand, 8 reps (Set 2) Dumbbell (10 kg) in each hand, 1 to 5 reps (Set 3) |
Rocket jump | 15 reps (Set 1), 10 reps (Set 2), 1 to 5 reps (Set 3) |
Lateral box jump | 6 inches to your side, 10 reps each side (Set 1 to Set 3) |
The modified single-leg squat (MSLS) | Holding a dumbbell in each hand + unilateral (1 leg at a time) training. Dumbbell (6 kg) in each hand, 12 reps (Set 1) Dumbbell (8 kg) in each hand, 8 reps (Set 2) Dumbbell (10 kg) in each hand, 1 to 5 reps (Set 3) |
The laterally resisted split squat (LRSS) | Holding a dumbbell in each hand + laterally split squat (one lunge each to the left and right). Dumbbell (6 kg) in each hand, 12 reps (Set 1) Dumbbell (8 kg) in each hand, 8 reps (Set 2) Dumbbell (10 kg) in each hand, 1 to 5 reps (Set 3) |
The bilateral back squat (BS) | Barbell (10 kg) + weight plates (30 kg) = 40 kg, 12 reps (Set 1) Barbell (10 kg) + weight plates (40 kg) = 50 kg, 8 reps (Set 2) Barbell (10 kg) + weight plates (50 kg) = 60 kg, 1 to 5 reps (Set 3) |
Box jumps | Counter movement jumps Box height: 18 inches, 12 reps (Set 1) Box height: 24 inches, 8 reps (Set 2) Box height: 32 inches, 1 to 5 reps (Set 3) |
Cool-down | Muscle relaxation can be performed with roller stretching or static stretching |
Parameter | EG (n = 15) M ± SD | CG (n = 15) M ± SD | F-Value | p-Value | η2 |
---|---|---|---|---|---|
RFD (N/s) | |||||
Pre | 8060 ± 580 | 8066 ± 624 | 20.91 * | <0.05 | 0.428 |
Post | 9115 ± 629 | 8070 ± 542 | |||
GRF (N) | |||||
Pre | 1956 ± 222 | 1952 ± 301 | 5.17 * | <0.05 | 0.156 |
Post | 2119 ± 263 | 1958 ± 301 | |||
Duration of passage (s) | |||||
Pre | 0.48 ± 0.04 | 0.47 ± 0.03 | 38.18 * | <0.05 | 0.577 |
Post | 0.59 ± 0.03 | 0.46 ± 0.06 | |||
Jump height (m) | |||||
Pre | 0.44 ± 0.06 | 0.43 ± 0.06 | 93.36 * | <0.05 | 0.769 |
Post | 0.58 ± 0.03 | 0.44 ± 0.06 |
Parameter | EG (n = 15) M ± SD | CG (n = 15) M ± SD | F-Value | p-Value | η2 |
---|---|---|---|---|---|
JD (m) | 89.37 * | <0.05 | 0.761 | ||
L-R Pre | 1.47 ± 0.12 | 1.48 ± 0.10 | |||
L-R Post | 1.66 ± 0.08 | 1.49 ± 0.10 | |||
H-GRF (N) | |||||
L-Pre | 735 ± 82 | 733 ± 86 | 13.98 * | <0.05 | 0.333 |
L-Post | 823 ± 53 | 737 ± 83 | |||
R-Pre | 741 ± 78 | 740 ± 91 | 7.39 * | <0.05 | 0.209 |
R-Post | 810 ± 75 | 738 ± 62 | |||
V-GRF (N) | |||||
L-Pre | 1719 ± 198 | 1718 ± 189 | 12.51 * | <0.05 | 0.309 |
L-Post | 1928 ± 130 | 1721 ± 142 | |||
R-Pre | 1733 ± 183 | 1735 ± 160 | 16.69 * | <0.05 | 0.373 |
R-Post | 1903 ± 174 | 1739 ± 171 | |||
R-GRF (N) | |||||
L-Pre | 1870 ± 209 | 1869 ± 201 | 13.26 * | <0.05 | 0.321 |
L-Post | 2096 ± 134 | 1873 ± 159 | |||
R-Pre | 1885 ± 194 | 1887 ± 176 | 17.42 * | <0.05 | 0.384 |
R-Post | 2069 ± 180 | 1890 ± 176 | |||
T-PRF (θ) | |||||
L-Pre | 66.7 ± 1.3 | 66.8 ± 1.5 | 0.024 | >0.05 | 0.001 |
L-Post | 66.7 ± 1.1 | 66.7 ± 1.2 | |||
R-Pre | 66.7 ± 1.3 | 66.8 ± 1.5 | 0.778 | >0.05 | 0.027 |
R-Post | 66.1 ± 1.5 | 66.8 ± 1.4 |
Parameter | EG (n = 15) M ± SD | CG (n = 15) M ± SD | F-Value | p-Value | η2 |
---|---|---|---|---|---|
JD (m) | |||||
L-Pre | 0.86 ± 0.07 | 0.87 ± 0.06 | 79.33 * | <0.05 | 0.739 |
L-Post | 1.15 ± 0.11 | 0.88 ± 0.06 | |||
R-Pre | 0.89 ± 0.07 | 0.90 ± 0.05 | 36.71 * | <0.05 | 0.567 |
R-Post | 1.14 ± 0.09 | 0.88 ± 0.06 | |||
RFD (N/S) Left and right foot take-off | |||||
L-Pre | 6386 ± 291 | 6353 ± 239 | 16.70 * | <0.05 | 0.374 |
L-Post | 6816 ± 373 | 6349 ± 233 | |||
R-Pre | 6269 ± 312 | 6268 ± 298 | 9.44 * | <0.05 | 0.252 |
R-Post | 7160 ± 311 | 5939 ± 592 | |||
H-GRF (N) Step-back take-off | |||||
L-Pre | 954 ± 221 | 948 ± 233 | 23.68 * | <0.05 | 0.458 |
L-Post | 1072 ± 194 | 954 ± 215 | |||
R-Pre | 913 ± 224 | 906 ± 203 | 4.49 * | <0.05 | 0.138 |
R-Post | 1053 ± 236 | 926 ± 184 | |||
V-GRF (N) Step-back landing | |||||
L-Pre | 1448 ± 268 | 1443 ± 269 | 23.19 * | <0.05 | 0.453 |
L-Post | 1606 ± 204 | 1454 ± 251 | |||
R-Pre | 1422 ± 281 | 1420 ± 239 | 4.99 * | <0.05 | 0.151 |
R-Post | 1582 ± 245 | 1430 ± 218 | |||
R-GRF (N) Resultant force of step-back | |||||
L-Pre | 1734 ± 345 | 1728 ± 350 | 24.83 * | <0.05 | 0.470 |
L-Post | 1932 ± 276 | 1740 ± 325 | |||
R-Pre | 1690 ± 356 | 1686 ± 307 | 5.62 * | <0.05 | 0.167 |
R-Post | 1906 ± 304 | 1704 ± 279 | |||
T-PRF (θ) Step-back resultant force trajectory | |||||
L-Pre | 56.7 ± 1.4 | 56.8 ± 2.0 | 1.69 | >0.05 | 0.057 |
L-Post | 56.3 ± 1.8 | 56.7 ± 1.9 | |||
R-Pre | 57.2 ± 2.0 | 57.2 ± 2.4 | 1.98 | >0.05 | 0.066 |
R-Post | 56.2 ± 1.9 | 57.1 ± 1.9 | |||
Action time of step-back (s) | |||||
L-Pre | 1.38 ± 0.09 | 1.36 ± 0.07 | 157.08 * | <0.05 | 0.849 |
L-Post | 1.06 ± 0.04 | 1.35 ± 0.05 | |||
R-Pre | 1.19 ± 0.07 | 1.18 ± 0.06 | 47.63 * | <0.05 | 0.630 |
R-Post | 1.03 ± 0.06 | 1.19 ± 0.06 |
Parameter | Vertical Jump M ± SD | Lateral Jump M ± SD | Horizontal Jump M ± SD | F-Value | p-Value | η2 |
---|---|---|---|---|---|---|
JD (m) | 0.58 ± 0.03 | 1.66 ± 0.08 | 1.15 ± 0.05 | 1758.37 * | <0.05 | 0.99 |
R-GRF (N) | 2119 ± 263 | 2040 ± 134 | 1909 ± 277 | 18.81 * | <0.05 | 0.57 |
T-PRF (θ) | 90.0 ± 0.0 | 66.4 ± 0.9 | 56.7 ± 1.6 | 6465.28 * | <0.05 | 0.98 |
Test | Group | M ± SD | df | t-Value | p-Value | |
---|---|---|---|---|---|---|
SIR (%) | Pre | Experimental | 22 ± 12.06 | 28 | −0.79 | 0.44 |
SIR (%) | Pre | Control | 15 ± 3.80 | |||
SIR (%) | Post | Experimental | 6 ± 5.26 | 28 | −5.44 * | 0.00 |
SIR (%) | Post | Control | 25 ± 12.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-Y.; Wu, C.-E.; Huang, H. The Effects of Plyometric Training on the Performance of Three Types of Jumps and Jump Shots in College-Level Male Basketball Athletes. Appl. Sci. 2024, 14, 12015. https://doi.org/10.3390/app142412015
Huang W-Y, Wu C-E, Huang H. The Effects of Plyometric Training on the Performance of Three Types of Jumps and Jump Shots in College-Level Male Basketball Athletes. Applied Sciences. 2024; 14(24):12015. https://doi.org/10.3390/app142412015
Chicago/Turabian StyleHuang, Wei-Yang, Cheng-En Wu, and Hsuan Huang. 2024. "The Effects of Plyometric Training on the Performance of Three Types of Jumps and Jump Shots in College-Level Male Basketball Athletes" Applied Sciences 14, no. 24: 12015. https://doi.org/10.3390/app142412015
APA StyleHuang, W.-Y., Wu, C.-E., & Huang, H. (2024). The Effects of Plyometric Training on the Performance of Three Types of Jumps and Jump Shots in College-Level Male Basketball Athletes. Applied Sciences, 14(24), 12015. https://doi.org/10.3390/app142412015