Correlation Between Impervious Surface and Surface Temperature Change in Typical Urban Agglomerations—The Case Study of Xuzhou City, China
Abstract
:1. Introduction
2. Impervious Surface Extraction Method
2.1. Extraction of Built-Up Areas
2.2. Impervious Surface Extraction
3. Experimental Results and Analysis
3.1. Study Area and Data
3.2. Analysis of Spatial and Temporal Changes in Impervious Surfaces
3.3. Effect of Impermeable Surfaces on Surface Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Song, J.; Zheng, Q.; Blackburn, G.A.; Wang, K.; Huang, L.Y.; Pan, Y.; Moore, N.; Shahtahmassebi, G.; Haghighi, R.S.; et al. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 94–112. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Kundu, A. Growth of Dehradun city: An application of linear spectral unmixing (LSU) technique using multi-temporal landsat satellite data sets. Remote Sens. Appl. Soc. Environ. 2015, 1, 98–111. [Google Scholar] [CrossRef]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef]
- Carlson, T.N.; Arthur, S.T. The impact of land use—Land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Xu, H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Z.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Xu, H.Q.; Wang, M.Y. Analysis of Main Remote Sensing Methods for Surface Impermeable Water Surface Information. J. Remote Sens. 2016, 20, 1270–1289. [Google Scholar]
- Bektaş Balçik, F. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices. Environ. Monit. Assess. 2014, 186, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gang, C.; Li, X.; Chen, Y.; Li, J. Application of a normalized difference impervious index (NDII) to extract urban impervious surface features based on Landsat TM images. Int. J. Remote Sens. 2015, 36, 1055–1069. [Google Scholar] [CrossRef]
- Mu, Y.C.; Ling, Y.W.; Zhang, L.L.; Chen, Y.H. A New Enhanced Impermeable Surface Index. Sci. Surv. Mapp. 2018, 43, 83–87. [Google Scholar]
- Ma, Y.; Kuang, Y.; Huang, N. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Sun, G.; Chen, X.; Jia, X.; Yao, Y.; Wang, Z. Combinational build-up index (CBI) for effective impervious surface mapping in urban areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 2081–2092. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q.; Li, G. Residential population estimation using a remote sensing derived impervious surface approach. Int. J. Remote Sens. 2006, 27, 3553–3570. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing, A Remote Sensing Perspective, 4th ed.; Pearson Prentice Hall: Saddle River, NJ, USA, 2015. [Google Scholar]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven, An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.S.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.L.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wu, W.; Xia, L.G.; Luo, R.; Shen, Z.F. Research on Automatic Extraction of Impermeable Surface by Integrating Nighttime Light Data and Landsat TM Images. J. Earth Inf. Sci. 2017, 19, 1364–1374. [Google Scholar]
- Tang, P.F.; Miao, Z.M.; Lin, C.; Du, F.J.; Guo, S.C. An Automatic Extraction Method for Impermeable Surface by Integrating High Resolution Night Light and Landsat OLI Images. J. Infrared Millim. Waves 2020, 39, 128–136. [Google Scholar]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing improved time-series DMSP-OLS-like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4407714. [Google Scholar] [CrossRef]
- Zhang, J. Remote Sensing and Spatial and Temporal Evolution of Surface Thermal Environment in the Pearl River Delta Region; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences: Guangzhou, China, 2006. [Google Scholar]
Year | Method Accuracy | Kappa |
---|---|---|
2013 | 97.80% | 0.8562 |
2014 | 97.79% | 0.8660 |
2015 | 97.81% | 0.8851 |
2016 | 97.75% | 0.8951 |
2017 | 97.76% | 0.8991 |
2018 | 97.77% | 0.9025 |
2019 | 94.74% | 0.8460 |
2020 | 92.08% | 0.8867 |
2021 | 93.23% | 0.9109 |
2022 | 95.28% | 0.9127 |
Temperature Classification Rules | |
---|---|
Lower temperature | Un < Um – Us |
Subcooled zone | Um – Us < Un < Um – 0.5 × Us |
Central temperature area | Un – 0.5 × Us < Un < Um + 0.5 × Us |
Subtropical region | Um + 0.5 × Us < Un < Um + Us |
High-temperature zone | Un > Um + Us |
Percentage of Impervious Surface Area by Temperature Classification, Xuzhou City, 2013–2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
Low temperature | 2.2% | 1.7% | 1.8% | 11.4% | 7.7% | 3.9% | 4.5% | 3.1% | 6.9% | 1.6% |
Sub-low temperature | 3.4% | 5.4% | 7.0% | 6.1% | 6.0% | 8.0% | 4.4% | 6.1% | 9.4% | 3.5% |
Medium temperature | 33.0% | 34.7% | 38.7% | 22.6% | 29.5% | 29.0% | 29.1% | 36.8% | 28.9% | 34.8% |
Sub-high temperature | 21.1% | 21.2% | 22.2% | 15.0% | 23.0% | 21.8% | 26.9% | 27.3% | 17.4% | 28.7% |
High temperature | 40.2% | 36.9% | 30.0% | 44.8% | 33.8% | 37.3% | 35.0% | 26.7% | 37.5% | 31.4% |
Zonal Average Temperature 2013–2022 (°C) | |||
---|---|---|---|
Year | Impervious Surface Aggregation Zone | Other Impervious Surface Areas | Permeable Surface Area |
2013 | 37.11 | 34.46 | 32.64 |
2014 | 31.90 | 30.23 | 28.90 |
2015 | 38.54 | 36.02 | 34.57 |
2016 | 37.34 | 34.06 | 31.85 |
2017 | 36.13 | 34.09 | 32.17 |
2018 | 34.30 | 32.20 | 30.10 |
2019 | 37.30 | 34.68 | 31.14 |
2020 | 30.58 | 29.61 | 27.91 |
2021 | 40.23 | 37.62 | 35.48 |
2022 | 32.60 | 30.44 | 28.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, H.; Zhang, H.; Zheng, N.; Li, S.; Zhang, S.; Zhang, D.; Li, Z.; Yan, C. Correlation Between Impervious Surface and Surface Temperature Change in Typical Urban Agglomerations—The Case Study of Xuzhou City, China. Appl. Sci. 2024, 14, 11803. https://doi.org/10.3390/app142411803
Gao Y, Liu H, Zhang H, Zheng N, Li S, Zhang S, Zhang D, Li Z, Yan C. Correlation Between Impervious Surface and Surface Temperature Change in Typical Urban Agglomerations—The Case Study of Xuzhou City, China. Applied Sciences. 2024; 14(24):11803. https://doi.org/10.3390/app142411803
Chicago/Turabian StyleGao, Yandong, Huiqin Liu, Hua Zhang, Nanshan Zheng, Shijin Li, Shubi Zhang, Di Zhang, Zhi Li, and Chao Yan. 2024. "Correlation Between Impervious Surface and Surface Temperature Change in Typical Urban Agglomerations—The Case Study of Xuzhou City, China" Applied Sciences 14, no. 24: 11803. https://doi.org/10.3390/app142411803
APA StyleGao, Y., Liu, H., Zhang, H., Zheng, N., Li, S., Zhang, S., Zhang, D., Li, Z., & Yan, C. (2024). Correlation Between Impervious Surface and Surface Temperature Change in Typical Urban Agglomerations—The Case Study of Xuzhou City, China. Applied Sciences, 14(24), 11803. https://doi.org/10.3390/app142411803