A Simulation Study on Urea Maldistribution and Implications for NOx Reduction with a Multi-Channel Modelling Approach
Abstract
1. Introduction
2. Modelling and Methods
2.1. One-DimensionalModel Development
2.2. Urea Dosing Uniformity
3. Results
3.1. One-DimensionalModel Calibration
3.2. Multi-Channel Model Validation and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| Symbols Used | |
| A [-] | open front area | 
| A0 [mol m−3s−1] | pre-exponential factor | 
| Cps [J kg−1K−1] | specific heat capacity of the solid phase | 
| dh [m] | hydraulic diameter of the substrate channel | 
| EA [J mol−1] | activation energy | 
| f [kg m−1s−1] | friction factor | 
| h [Wm−2K−1] | heat transfer coefficient | 
| ΔHR [J mol−1] | enthalpy of reaction | 
| kmi [m2s−1] | diffusion coefficient | 
| m [kg s−1] | mass flow rate | 
| M [kg mol−1] | molecular weight | 
| P [Pa] | pressure | 
| R [J K−1mol−1] | gas constant | 
| RHj [mol kg−1s−1] | reaction rate j in the gas phase | 
| Rs [mol kg−1s−1] | reaction rate in the solid phase | 
| S [m−1] | solid-phase specific area | 
| SV [K h−1] | space velocity | 
| t [s] | time | 
| T [K] | temperature of the gas phase | 
| Ts [K] | temperature of the solid phase | 
| v [m s−1] | superficial velocity | 
| x [m] | axial coordinate | 
| Greek Letters | |
| λs [Wm−1K−1] | thermal conductivity of the solid phase | 
| μi [-] | mass fraction of component i in the gas phase | 
| μsi [-] | mass fraction of component i in the solid phase | 
| ρ [kgm−3] | density of the gas phase | 
| ρs [kgm−3] | density of the washcoat phase | 
| φ [-] | porosity | 
| ωi,j [-] | stoichiometry of component i in reaction j | 
References
- Lambert, C.; Hammerle, R.; McGill, R.; Khair, M.; Christopher, S. Technical Advantages of Urea SCR for Light-Duty and Heavy-Duty Diesel Vehicle Applications; 2004-01-1291; SAE: Warrendale, PA, USA, 2004. [Google Scholar]
 - Li, D.; Zhu, S.; Zhang, G.; Sun, K.; Bai, S.; Li, G.; Cheng, H. Comprehensive Experimental and Numerical Optimization of Diesel Engine Thermal Management Strategy for Emission Clarification and Carbon Dioxide Control. Processes 2023, 11, 1252. [Google Scholar] [CrossRef]
 - Mehdi, G.; Zhou, S.; Zhu, Y.; Shah, A.; Chand, K. Numerical Investigation of SCR Mixer Design Optimization for Improved Performance. Processes 2019, 7, 168. [Google Scholar] [CrossRef]
 - Paramadayalan, T.; Pant, A. Selective Catalytic Reduction Converter Design: The Effect of Ammonia Nonuniformity at Inlet. Korean. Chem. Eng. J. 2013, 30, 2170–2177. [Google Scholar] [CrossRef]
 - Sampath, M.K.; Lacin, F. CFD Study of Sensitivity Parameters in SCR NOx Reduction Modeling; SAE Technical Paper Series 2014-01-2346; SAE: Warrendale, PA, USA, 2014. [Google Scholar]
 - Jang, J.; Na, S.; Roh, H.; Ahn, S.; Choi, G. Spraying and Mixing Characteristics of Urea in a Static Mixer Applied Marine SCR System. Energies 2021, 14, 5788. [Google Scholar] [CrossRef]
 - Zhang, X.; Romzek, M. 3-D Numerical Study of Flow Mixing in Front of SCR for Different Injection Systems; 2007-01-1578; SAE: Warrendale, PA, USA, 2007. [Google Scholar]
 - Cho, I.; Lee, S.; Kang, H.; Baik, D.S. A Study on The NOx Reduction of Urea-Selective Catalytic Reduction (SCR) System in a Heavy Duty Diesel Engine; 2007-01-3447; SAE: Warrendale, PA, USA, 2007. [Google Scholar]
 - Jeong, S.J.; Lee, S.J.; Kim, W.S.; Lee, C.B. Simulation on the Optimum Shape and Location of Urea Injector for Urea-SCR System of Heavy-Duty Diesel Engine to Prevent NH3 Slip; 2005-01-3886; SAE: Warrendale, PA, USA, 2005. [Google Scholar]
 - van Helden, R.; Verbeek, R.; Willems, F.; vander Welle, R. Optimization of Urea SCR DeNOx Systems for HD Diesel Engines; 2004-01-0154; SAE: Warrendale, PA, USA, 2004. [Google Scholar]
 - Kuternowski, F.; Staszak, M.; Staszak, K. Modeling of Urea Decomposition in Selective Catalytic Reduction (SCR) for Systems of Diesel Exhaust Gases Aftertreatment by Finite Volume Method. Catalysts 2020, 10, 749. [Google Scholar] [CrossRef]
 - Li, L.; Lin, W.; Zhang, Y. A New Dynamic Injection System of Urea-Water Solution for a Vehicular Select Catalyst Reduction System. Energies 2017, 10, 12. [Google Scholar] [CrossRef]
 - Wardana, M.; Oh, K.; Lim, O. Investigation of Urea Uniformity with Different Types of Urea Injectors in an SCR System. Catalysts 2020, 10, 1269. [Google Scholar] [CrossRef]
 - Wardana, M.; Shahariar, G.M.H.; Oh, K.; Lim, O. Ammonia Uniformity to Predict NOx Reduction Efficiency in an SCR System. Int. J. Automot. Technol. 2019, 20, 313–325. [Google Scholar] [CrossRef]
 - Wardana, M.K.A.; Oh, K.; Lee, Y.J.; Woo, Y.M.; Lim, O. Effects of Urea Injection Timing on Predicting NOx Conversion in SCR Systems. Int. J. Automot. Technol. 2020, 21, 137–145. [Google Scholar] [CrossRef]
 - Song, X.; Naber, J.; Johnson, J. Nonuniformity and NO2/NOx Ratio Effects on the SCR Performance Under Transient Engine Conditions; 2014-01-1556; SAE: Warrendale, PA, USA, 2014. [Google Scholar]
 - McKinley, T.L.; Alleyne, A.G.; Lee, C.F. Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation; 2010-01-0883; SAE: Warrendale, PA, USA, 2010; pp. 486–499. [Google Scholar]
 - Dammalapati, S.; Aghalayam, P.; Kaisare, N. Modeling the Effect of Nonuniformities from Urea Injection on SCR Performance Using CFD. Ind. Eng. Chem. Res. 2019, 58, 20247–20258. [Google Scholar] [CrossRef]
 - Wu, Y.J.; Wang, F.S.; Tang, W.Y.; Kakwani, R.; Hou, Y.L.; Feng, G. Urea Decomposition and Implication for NOx Reduction with Cu-Zeolite and Vanadia-Selective Catalytic Reduction. Chem. Eng. Technol. 2020, 43, 1758–1764. [Google Scholar] [CrossRef]
 - Bettoni, F.; von Rohr, P.R. SCR deNOx Process for Real Diesel Exhaust Gas under Steady-State and Transient Conditions. Chem. Eng. Technol. 1998, 21, 800–804. [Google Scholar] [CrossRef]
 - Liu, J.; Xu, M.; Guo, W.; Xi, W.; Liu, C.; Bengt, S. Flow and heat transfer mechanism of a regenerative cooling channel mounted with pin-fins using supercritical CO2 as coolant. Int. J. Therm. Sci. 2025, 208, 109425. [Google Scholar] [CrossRef]
 - GB 29518-2013; Diesel Engines NOx Reduction Agent. Aqueous Urea Solution (AUS 32). National Standards of People’s Republic of China: Beijing, China, 2013.
 - Ku, K.W.; Hong, J.G.; Park, C.W.; Chung, K.Y.; Sohn, S.H. Effects of Various Factors on the Conversion Efficiency of Urea Solution in a Urea Selective Catalytic Reduction System. Energy Fuels 2014, 28, 5959–5967. [Google Scholar] [CrossRef]
 - Kalyankar, A.; Munnannur, A.; Liu, Z. Predictive Modeling of Impact of ANR Non-Uniformity on Transient SCR System DeNOx Performance; SAE Technical Paper 2015-01-1055; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
 - Johansson, A.; Wallin, U.; Karlsson, M.; Isaksson, A.; Bush, P. Investigation on Uniformity Indices Used for Diesel Exhaust Aftertreatment Systems; SAE Technical Paper 2008-01-0613; SAE: Warrendale, PA, USA, 2008. [Google Scholar]
 







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, J.; Chen, K.; Su, G.; Jia, H.; Tian, W.; Bai, S.; Sun, K. A Simulation Study on Urea Maldistribution and Implications for NOx Reduction with a Multi-Channel Modelling Approach. Appl. Sci. 2024, 14, 11105. https://doi.org/10.3390/app142311105
Lang J, Chen K, Su G, Jia H, Tian W, Bai S, Sun K. A Simulation Study on Urea Maldistribution and Implications for NOx Reduction with a Multi-Channel Modelling Approach. Applied Sciences. 2024; 14(23):11105. https://doi.org/10.3390/app142311105
Chicago/Turabian StyleLang, Junyu, Kewei Chen, Guoliang Su, Haoran Jia, Wenlong Tian, Shuzhan Bai, and Ke Sun. 2024. "A Simulation Study on Urea Maldistribution and Implications for NOx Reduction with a Multi-Channel Modelling Approach" Applied Sciences 14, no. 23: 11105. https://doi.org/10.3390/app142311105
APA StyleLang, J., Chen, K., Su, G., Jia, H., Tian, W., Bai, S., & Sun, K. (2024). A Simulation Study on Urea Maldistribution and Implications for NOx Reduction with a Multi-Channel Modelling Approach. Applied Sciences, 14(23), 11105. https://doi.org/10.3390/app142311105
        