Fault Diagnosis of Lithium-Ion Batteries Based on the Historical Trajectory of Remaining Discharge Capacity
Abstract
:1. Introduction
2. Model Parameter Identification
2.1. Second-Order RC Equivalent Circuit Models
2.2. SSA Identification Model Parameters
- (1)
- Randomly initialize the population.
- (2)
- Divide the population into discoverers and followers.
- (3)
- Update the position of the discoverer with the formula shown in (5) [11]:
- (4)
- Update the follower position, which is calculated as shown in (6) [11]:
- (5)
- Randomly select the early warning person and update the position with the formula shown in (7) [11]:
- (6)
- Determine whether the group fitness value is the minimum, if not reached, then return to step (2).
3. Extended Kalman Filter Estimated SOC
4. Fault Diagnosis Method
4.1. Principle of Box Diagram
4.2. Block Diagram of Fault Diagnosis Process
5. Experimental Validations
5.1. Experimental Platform Construction
5.2. Model Parameter Identification Results
5.3. EKF Estimation Results
5.4. Fault Diagnosis Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chombo, P.V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- An, Z.; Jia, L.; Ding, Y.; Dang, C.; Li, X. A review on lithium-ion power battery thermal management technologies and thermal safety. J. Therm. Sci. 2017, 26, 391–412. [Google Scholar] [CrossRef]
- Jaguemont, J.; Bardé, F. A critical review of lithium-ion battery safety testing and standards. Appl. Therm. Eng. 2023, 231, 121014. [Google Scholar] [CrossRef]
- Xu, G.; Han, Q.; Chen, H.; Xia, Y.; Liu, Z.; Tian, S. Safety warning analysis for power battery packs in electric vehicles with running data. J. Energy Storage 2022, 56, 105878. [Google Scholar] [CrossRef]
- Lamb, J.; Jeevarajan, J.A. New developments in battery safety for large-scale systems. MRS Bull. 2021, 46, 395–401. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, S.; Tang, N.; Fu, Y.; Wang, K. Research progress in fault detection of battery systems: A review. J. Energy Storage 2024, 98, 113079. [Google Scholar] [CrossRef]
- Khaneghah, M.Z.; Alzayed, M.; Chaoui, H. Fault detection and diagnosis of the electric motor drive and battery system of electric vehicles. Machines 2023, 11, 713. [Google Scholar] [CrossRef]
- Mouncef, E.; Mostafa, B.; Naoufl, E. Online parameter estimation of a lithium-ion battery based on sunflower optimization algorithm. In Proceedings of the 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, 20–23 October 2020; pp. 53–58. [Google Scholar]
- Wu, G.; Zhu, C.; CC, C. Comparison of the first order and the second order equivalent circuit model applied in state of charge estimation for battery used in electric vehicles. J. Asian Electr. Veh. 2010, 8, 1357–1362. [Google Scholar] [CrossRef]
- Chang, C.; Wang, Z.; Zhang, Z.; Jiang, J.; He, X.; Tian, A.; Jiang, Y. Short-circuit fault detection and quantitative analysis based on mean-difference model with variational modal decomposition. J. Electrochem. Energy Convers. Storage 2024, 21, 021007. [Google Scholar] [CrossRef]
- Xu, D.; Liu, J.; Liu, D.; Fu, Q.; Li, M.; Faiz, M.A.; Liu, S.; Li, T.; Cui, S.; Yan, G. Indicator system optimization model for evaluating resilience of regional agricultural soil–water resource composite system. Water Supply 2021, 21, 3251–3266. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y.; Zeng, K.; Ma, Y.; Li, M. Joint estimation of SOC and SOH of lithium battery for pure electric vehicles based on EKF algorithm. J. Shaoyang Coll. (Nat. Sci. Ed.) 2024, 21, 45–55. [Google Scholar]
- Zhao, X.; Wang, J.; Zhao, M.; Pan, B.; Wang, R.; Wang, L.; Yan, X. Micro-short circuit fault diagnosis of the parallel battery module based on increment capacity curve. J. Energy Storage 2024, 86, 111201. [Google Scholar] [CrossRef]
- Qin, H.; Huang, B.; Yan, X.; Wang, Y.; Xu, S.; Liu, S. Research on the diagnosis method of micro-short circuit of lithium iron phosphate battery pack. Energy Storage Sci. Technol. 2021, 10, 664–670. [Google Scholar]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Venkatesh, B. Accuracy improvement of SOC estimation in lithium-ion batteries. J. Energy Storage 2016, 6, 95–104. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, Y.; Han, X.; Dai, H.; Ouyang, M. Lithium-ion battery capacity estimation based on open circuit voltage identification using the iteratively reweighted least squares at different aging levels. J. Energy Storage 2021, 44, 103487. [Google Scholar] [CrossRef]
Algorithm | RSME | MAE |
---|---|---|
SSA + EKF | 0.0049 | 0.0034 |
GA + EKF | 0.0063 | 0.0051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Qu, B.; Liu, S.; Yan, H.; Zhang, Z.; Chang, C. Fault Diagnosis of Lithium-Ion Batteries Based on the Historical Trajectory of Remaining Discharge Capacity. Appl. Sci. 2024, 14, 10895. https://doi.org/10.3390/app142310895
Jiang J, Qu B, Liu S, Yan H, Zhang Z, Chang C. Fault Diagnosis of Lithium-Ion Batteries Based on the Historical Trajectory of Remaining Discharge Capacity. Applied Sciences. 2024; 14(23):10895. https://doi.org/10.3390/app142310895
Chicago/Turabian StyleJiang, Jiuchun, Bingrui Qu, Shuaibang Liu, Huan Yan, Zhen Zhang, and Chun Chang. 2024. "Fault Diagnosis of Lithium-Ion Batteries Based on the Historical Trajectory of Remaining Discharge Capacity" Applied Sciences 14, no. 23: 10895. https://doi.org/10.3390/app142310895
APA StyleJiang, J., Qu, B., Liu, S., Yan, H., Zhang, Z., & Chang, C. (2024). Fault Diagnosis of Lithium-Ion Batteries Based on the Historical Trajectory of Remaining Discharge Capacity. Applied Sciences, 14(23), 10895. https://doi.org/10.3390/app142310895