Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array
Abstract
1. Introduction
2. Data and Methods
3. Results
3.1. Checkerboard Resolution Test and Restoring Resolution Test
3.2. Three-Dimensional S-Wave Velocity Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1–52. [Google Scholar] [CrossRef]
- Xu, W.-L.; Pei, F.-P.; Wang, F.; Meng, E.; Ji, W.-Q.; Yang, D.-B.; Wang, W. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Fyfe, W.S. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K–Ar geochronology. Tectonophysics 2001, 339, 385–401. [Google Scholar] [CrossRef]
- Pan, B.; Liu, G.; Cheng, T.; Zhang, J.; Sun, Z.; Ma, B.; Wu, H.; Liang, G.; Guo, M.; Kong, Q.; et al. Development and status of active volcano monitoring in China. Act. Volcanoes China 2021, 510, 227–252. [Google Scholar] [CrossRef]
- Zhao, D.; Lei, J.; Tang, R. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin. Sci. Bull. 2004, 49, 1401–1408. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, D. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 2005, 397, 281–295. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Y. Changbai intraplate volcanism and deep earthquakes in East Asia: A possible link? Geophys. J. Int. 2013, 195, 706–724. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Zhao, P. Dispersion Curve Interpolation Based on Kriging Method. Appl. Sci. 2023, 13, 2557. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, H.; Zhao, D.; Liu, C.; Feng, X.; Liu, T.; Ma, J. Mantle transition zone structure beneath the Changbai volcano: Insight into deep slab dehydration and hot upwelling near the 410 km discontinuity. J. Geophys. Res. Solid Earth 2016, 121, 5794–5808. [Google Scholar] [CrossRef]
- Zhu, H.; Tian, Y.; Zhao, D.; Li, H.; Liu, C. Seismic Structure of the Changbai Intraplate Volcano in NE China From Joint Inversion of Ambient Noise and Receiver Functions. J. Geophys. Res. Solid Earth 2019, 124, 4984–5002. [Google Scholar] [CrossRef]
- Shao, J.A.; Zhang, L.Q.; Xiao, Q.H.; Li, X.B. Rising of Da Hinggan Mts in Mesozonic: A possible mechanism of intracontinental orogeny. Acta Petrol. Sin. 2005, 23, 789–794. [Google Scholar]
- Liu, J. Study on geochronology of the Cenozoic volcanic rocks in northeast China. Acta Petrol. Sin. 1987, 3, 21–31. [Google Scholar]
- Liu, J.; Guo, Z.; Liu, Q. Volcanic hazards and monitoring. Quat. Sci. 1999, 19, 414–422. [Google Scholar]
- Bai, Z.D.; Tian, M.Z.; Wu, F.D.; Xu, D.B.; Li, T.J. Yanshan, Gaoshan-Two Active Volcanoes of the Volcanic Cluster in Arshan, Inner Mongolia. Earthq. Res. China 2005, 21, 113–117. [Google Scholar]
- Tang, J.; Wang, J.; Chen, X.; Zhao, G.; Zhan, Y. Preliminary investigation for electric conductivity structure of the crust and upper mantle beneath the Aershan volcano area. Chin. J. Geophys. 2005, 48, 196–202. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, Q. Yanshan and Gao Shan Volcanoes in the Daxingan mounta in range—A new eruption style. Seismol. Geol. 2010, 32, 28–37. [Google Scholar]
- Ho, K.-S.; Ge, W.-C.; Chen, J.-C.; You, C.-F.; Yang, H.-J.; Zhang, Y.-L. Late Cenozoic magmatic transitions in the central Great Xing’an Range, Northeast China: Geochemical and isotopic constraints on petrogenesis. Chem. Geol. 2013, 352, 1–18. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q. Velocity structure in upper mantle and its implications for the volcanism near by the north edge of Songliao Basin. Chin. J. Geophys. 2019, 62, 2918–2929. [Google Scholar]
- Zhang, F.; Wu, Q.; Li, Y. The traveltime tomography study by teleseismic P wave data in the Northeast Chinese area. Chin. J. Geophys. 2013, 56, 2690–2700. [Google Scholar]
- Zhang, F.; Wu, Q.; Li, Y.; Zhang, R. The deep seismic velocity structures beneath volcanoes in GreatXing’an Range and volcanichanism. Chin. J. Geophys. 2022, 65, 1271–1287. [Google Scholar]
- Gu, X. Geochemical Characteristics and Evolution Mechanism of Thermal and Mineral Springs in Arxan. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Cui, Y.; Sun, F.; Liu, L.; Xie, C.; Li, J.; Chen, Z.; Li, Y.; Du, J. Contribution of deep-earth fluids to the geothermal system: A case study in the Arxan volcanic region, northeastern China. Front. Earth Sci. 2023, 10, 996583. [Google Scholar] [CrossRef]
- Li, J.; Tian, Y.; Zhao, D.; Yan, D.; Li, Z.; Li, H. Magmatic System and Seismicity of the Arxan Volcanic Group in Northeast China. Geophys. Res. Lett. 2023, 50, e2022GL101105. [Google Scholar] [CrossRef]
- Pan, X.; Gu, G.; Han, D.; Bao, B.; Guan, S.; Song, Y. Investigation of hot spring gas components and soil gas fluxes in Arxan Holocene volcanic field, Inner Mongolia, NE China. Front. Earth Sci. 2023, 11, 1174315. [Google Scholar] [CrossRef]
- Zhao, D.; Maruyama, S.; Omori, S. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res. 2007, 11, 120–131. [Google Scholar] [CrossRef]
- Lei, J.; Xie, F.; Fan, Q.; Santosh, M. Seismic imaging of the deep structure under the Chinese volcanoes: An overview. Phys. Earth Planet. Inter. 2013, 224, 104–123. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.J.; Ning, J.; Feng, Y.; Grand, S.P.; Niu, F.; Kawakatsu, H.; Tanaka, S.; Obayashi, M.; Ni, J. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data. Earth Planet. Sci. Lett. 2015, 416, 1–11. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.J.; Ning, J.; Yang, Y.; Afonso, J.C.; Tang, Y. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth Planet. Sci. Lett. 2016, 433, 31–43. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, F.; Chen, M.; Yang, W. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography. Earth Planet. Sci. Lett. 2017, 461, 20–29. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q.; Li, Y. The traveltime tomography study by teleseismic S wave data in the Northeast Chinese area. Chin. J. Geophys. 2014, 57, 88–101. [Google Scholar]
- Han, J.; Kang, J.; Liu, C.; Liu, W.; Zhang, Y.; Wang, T.; Guo, Z.; Yuan, T.; Liu, L. Characteristics of the asthenosphere structure beneath the eastern segment of the Central Asia orogenic belt inferred from a long-period magnetotelluric survey. Chin. J. Geophys. 2019, 62, 1148–1158. [Google Scholar]
- Yan, D.; Tian, Y.; Zhao, D.; Li, H. Thermal and rheological structure of lithosphere beneath Northeast China. Tectonophysics 2022, 840, 229560. [Google Scholar] [CrossRef]
- Shapiro, N.M.; Campillo, M.; Stehly, L.; Ritzwoller, M.H. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science 2005, 307, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Van Der Hilst, R.D.; De Hoop, M.V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int. 2006, 166, 732–744. [Google Scholar] [CrossRef]
- Bensen, G.D.; Ritzwoller, M.H.; Barmin, M.P.; Levshin, A.L.; Lin, F.; Moschetti, M.P.; Shapiro, N.M.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef]
- Yang, Y.; Ritzwoller, M.H.; Jones, C.H. Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California. Geochem. Geophys. Geosystems. 2011, 12, Q02009. [Google Scholar] [CrossRef]
- Yang, Y.; Ritzwoller, M.H.; Levshin, A.L.; Shapiro, N.M. Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int. 2007, 168, 259–274. [Google Scholar] [CrossRef]
- Shen, W.; Ritzwoller, M.H.; Kang, D.; Kim, Y.; Lin, F.-C.; Ning, J.; Wang, W.; Zheng, Y.; Zhou, L. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int. 2016, 206, 954–979. [Google Scholar] [CrossRef]
- Masterlark, T.; Haney, M.; Dickinson, H.; Fournier, T.; Searcy, C. Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography. J. Geophys. Res. Solid Earth 2010, 115, B02409. [Google Scholar] [CrossRef]
- Nagaoka, Y.; Nishida, K.; Aoki, Y.; Takeo, M.; Ohminato, T. Seismic imaging of magma chamber beneath an active volcano. Earth Planet. Sci. Lett. 2012, 333–334, 1–8. [Google Scholar] [CrossRef]
- Seats, K.J.; Lawrence, J.F. The seismic structure beneath the Yellowstone Volcano Field from ambient seismic noise. Geophys. Res. Lett. 2014, 41, 8277–8282. [Google Scholar] [CrossRef]
- Lin, F.-C.; Li, D.; Clayton, R.W.; Hollis, D. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics 2013, 78, Q45–Q56. [Google Scholar] [CrossRef]
- Fang, H.; Yao, H.; Zhang, H.; Huang, Y.-C.; van der Hilst, R.D. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophys. J. Int. 2015, 201, 1251–1263. [Google Scholar] [CrossRef]
- Li, Z.; Ni, S.; Zhang, B.; Bao, F.; Zhang, S.; Deng, Y.; Yuen, D.A. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophys. Res. Lett. 2016, 43, 4954–4961. [Google Scholar] [CrossRef]
- Goldstein, P.; Snoke, A. SAC Availability for the IRIS Community. Inc. Inst. Seismol. Data Manag. Cent. Electron. Newsl. 2005, 7, 875360. [Google Scholar]
- Herrmann, R.B. Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismol. Res. Lett. 2013, 84, 1081–1088. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, X.; Song, X.; Yang, Y.; Ritzwoller, M.H. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst. 2008, 9, 1–8. [Google Scholar] [CrossRef]
- Sun, X.; Song, X.; Zheng, S.; Yang, Y.; Ritzwoller, M.H. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq. Sci. 2010, 23, 449–463. [Google Scholar] [CrossRef]
- Xu, Z.J.; Song, X.; Zheng, S. Shear velocity structure of crust and uppermost mantle in China from surface wave tomography using ambient noise and earthquake data. Earthq. Sci. 2013, 26, 267–281. [Google Scholar] [CrossRef]
- Bao, X.; Song, X.; Li, J. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett. 2015, 417, 132–141. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Rawlinson, N.; Sambridge, M. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int. 2004, 156, 631–647. [Google Scholar] [CrossRef]
- Toomey, D.R.; Foulger, G.R. Tomographic inversion of local earthquake data from the Hengill-Grensdalur Central Volcano Complex, Iceland. J. Geophys. Res. Solid Earth 1989, 94, 17497–17510. [Google Scholar] [CrossRef]
- Miyano, K.; Aizawa, K.; Matsushima, T.; Shito, A.; Shimizu, H. Seismic velocity structure of Unzen Volcano, Japan, and relationship to the magma ascent route during eruptions in 1990–1995. Sci. Rep. 2021, 11, 22407. [Google Scholar] [CrossRef]
- Yan, D.; Tian, Y.; Zhao, D.; Li, H. Seismicity and Magmatic System of the Changbaishan Intraplate Volcano in East Asia. J. Geophys. Res. Solid Earth 2023, 128, e2023JB026853. [Google Scholar] [CrossRef]
- Linqi, X. On the evolution of volcanic magma from Wudalianchi. Acta Petrol. Sin. 1990, 6, 13–29+97. [Google Scholar]
- Schmincke, H.U. Volcanism; Springer: Berlin/Heidelberg, Germany, 2004; pp. 35–41, 209–228. [Google Scholar]
- Bardintzeff, J.M.; McBirney, A.R. Volcanology; Jones and Bartlett Publishers: Sudbury, MA, USA, 2000; pp. 76–81. [Google Scholar]
- Farrell, J.; Smith, R.B.; Husen, S.; Diehl, T. Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys. Res. Lett. 2014, 41, 3068–3073. [Google Scholar] [CrossRef]
- Huang, H.-H.; Lin, F.-C.; Schmandt, B.; Farrell, J.; Smith, R.B.; Tsai, V.C. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 2015, 348, 773–776. [Google Scholar] [CrossRef]
- Díaz, D.; Heise, W.; Zamudio, F. Three-dimensional resistivity image of the magmatic system beneath Lastarria volcano and evidence for magmatic intrusion in the back arc (northern Chile). Geophys. Res. Lett. 2015, 42, 5212–5218. [Google Scholar] [CrossRef]
- Liu, B.; Tong, W.; Zhang, B.; Zhang, Z. Microseismic obvervation in tengchong volcano-geothermal region. Chin. J. Geophys. 1986, 29, 547–556. [Google Scholar]
- Gilpin, B.; Lee, T.-C. A microearthquake study in the Salton Sea geothermal area, California. Bull. Seismol. Soc. Am. 1978, 68, 441–450. [Google Scholar] [CrossRef]
- Husen, S.; Smith, R.B.; Waite, G.P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 2004, 131, 397–410. [Google Scholar] [CrossRef]
- Jaxybulatov, K.; Shapiro, N.M.; Koulakov, I.; Mordret, A.; Landès, M.; Sens-Schönfelder, C. A large magmatic sill complex beneath the Toba caldera. Science 2014, 346, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Ma, J.; Liu, C.; Feng, X.; Liu, T.; Zhu, H.; Yan, D.; Li, H. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications. Chin. J. Geophys. 2019, 62, 1071–1082. [Google Scholar]
- Ma, J.; Tian, Y.; Liu, C.; Zhao, D.; Feng, X.; Zhu, H. P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics. Phys. Earth Planet. Inter. 2018, 274, 105–126. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q.-F.; Chen, L.; Wang, X.; Guo, G.; Li, T.; Zhang, K.; Li, J.; Chen, Y. Distinct Lithospheric Structure in the Xing’an-Mongolian Orogenic Belt. Geophys. Res. Lett. 2022, 49, e2021GL097283. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Q.-F.; Ai, Y.; Chen, L.; Jiang, M.; Wu, Q.; Guo, Z. Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures. Geology 2021, 49, 1260–1264. [Google Scholar] [CrossRef]
- Chu, R.; Helmberger, D.V.; Sun, D.; Jackson, J.M.; Zhu, L. Mushy magma beneath Yellowstone. Geophys. Res. Lett. 2010, 37, L01306. [Google Scholar] [CrossRef]
- Cashman, K.V.; Sparks, R.S.J.; Blundy, J.D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 2017, 355, eaag3055. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W. New, improved version of generic mapping tools released. Eos. Trans. AGU 1998, 79, 579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Tian, Y.; Liu, C.; Li, H. Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array. Appl. Sci. 2024, 14, 10596. https://doi.org/10.3390/app142210596
Qu L, Tian Y, Liu C, Li H. Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array. Applied Sciences. 2024; 14(22):10596. https://doi.org/10.3390/app142210596
Chicago/Turabian StyleQu, Lijuan, You Tian, Cai Liu, and Hongli Li. 2024. "Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array" Applied Sciences 14, no. 22: 10596. https://doi.org/10.3390/app142210596
APA StyleQu, L., Tian, Y., Liu, C., & Li, H. (2024). Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array. Applied Sciences, 14(22), 10596. https://doi.org/10.3390/app142210596