Biomimetic Capabilities of Lithium Disilicate Glass-Ceramic Restorations on Posterior Teeth: Evaluation of the Long-Term Survival Rate—A 10-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cases Selection
2.2. Clinical Preparation Protocol
2.3. Ceramic Restorations Fabrication
2.4. Clinical Cementation Protocol
2.5. Clinical Evaluation Periods
2.6. Clinical Evaluation Criteria
1. Color matching: | —Alfa: the color of the restoration matches that of the tooth; |
—Bravo: the discrepancy is not beyond normal perception; | |
—Charlie: the discrepancy is beyond normal perception; clinically | |
unacceptable. | |
2. Marginal discoloration: | —Alfa: no discoloration is detected; |
—Bravo: discoloration that does not penetrate in the pulpal direction; | |
—Charlie: discoloration that penetrates in the pulpal direction; | |
clinically unacceptable. | |
3. Postoperative hypersensitivity: | —Alfa: postoperative hypersensitivity is absent; |
—Bravo: has postoperative hypersensitivity. | |
4. Anatomical shape: | —Alfa: the restoration conforms to the anatomical shape of the tooth; |
—Bravo: the restoration does not conform to the existing anatomical shape, but the missing material is not sufficient to expose dentin; | |
—Charlie: a significant volume of material is missing, and dentin is exposed. | |
5. Proximal contact: | —Alfa: excellent proximal contact; |
—Bravo: proximal contact weak but present; | |
—Charlie: no proximal contact. | |
6. Marginal integrity: | —Alfa: no visible gap or crack; |
—Bravo: visible gap or crack; the probe enters a gap, but no dentin was detected; | |
—Charlie: there is a fracture of the restoration: a part is missing or the entire obturation. | |
7. Secondary carious lesion: | —Alfa: no carious lesion in the marginal zone; |
—Bravo: caries in the marginal zone of the restoration resulting in an area repair or replacement of the entire restoration. |
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christensen, G.J. Is the rush to all-ceramic crowns justified? J. Am. Dent. Assoc. 2014, 145, 192–194. [Google Scholar] [CrossRef]
- Burian, G.; Erdelt, K.; Schweiger, J.; Keul, C.; Edelhoff, D.; Güth, J.-F. In-vivo-wear in composite and ceramic full mouth rehabilitations over 3 years. Sci. Rep. 2021, 11, 14056. [Google Scholar] [CrossRef]
- Creugers, N.H.; Mentink, A.G.; Fokkinga, W.A.; Kreulen, C.M. 5-year follow-up of a prospective clinical study on various types of core restorations. Int. J. Prosthodont. 2005, 18, 34–39. [Google Scholar] [CrossRef]
- Opdam, N.J.; Bronkhorst, E.M.; Roeters, J.M.; Loomans, B.A. Longevity and reasons for failure of sandwich and total-etch posterior composite resin restorations. J. Adhes. Dent. 2007, 9, 469–475. [Google Scholar] [CrossRef]
- Krifka, S.; Anthofer, T.; Fritzsch, M.; Hiller, K.A.; Schmalz, G.; Federlin, M. Ceramic inlays and partial ceramic crowns: Influence of remaining cusp wall thickness on the marginal integrity and enamel crack formation in vitro. Oper. Dent. 2009, 34, 32–42. [Google Scholar] [CrossRef]
- Manhart, J.; Chen, H.Y.; Mehl, A.; Hickel, R. Clinical study of indirect composite resin inlays in posterior stress-bearing preparations placed by dental students: Results after 6 months and 1, 2, and 3 years. Quintessence Int. 2010, 41, 399–410. [Google Scholar]
- Haralur, S.B.; Al-Qahtani, A.S.; Al-Qarni, M.M.; Al-Homrany, R.M.; Aboalkhair, A.E. Influence of remaining dentin wall thickness on the fracture strength of endodontically treated tooth. J. Conserv. Dent. 2016, 19, 63–67. [Google Scholar] [CrossRef]
- Corrêa, G.; Brondani, L.P.; Wandscher, V.F.; Pereira, G.K.R.; Valandro, L.F.; Bergoli, C.D. Influence of remaining coronal thickness and height on biomechanical behavior of endodontically treated teeth: Survival rates, load to fracture and finite element analysis. J. Appl. Oral Sci. 2018, 26, e20170313. [Google Scholar] [CrossRef]
- Laajala, A.; Karhatsu, P.; Pesonen, P.; Laitala, M.L.; Näpänkangas, R.; Raustia, A.; Anttonen, V. Association of indirect restorations with past caries history and present need for restorative treatment in the northern Finland birth cohort. Clin. Oral Investig. 2018, 22, 1495–1501. [Google Scholar] [CrossRef]
- Malament, K.A.; Socransky, S.S. Survival of dicor glass-ceramic dental restorations over 14 years. Part II: Effect of thickness of Dicor material and design of tooth preparation. J. Prosthet. Dent. 1999, 81, 662–667. [Google Scholar] [CrossRef]
- Li, Z.; Gao, C.; Xu, Y.; Xu, J. Three years retrospective clinical evaluation of endodontically treated premolars restored by cast ceramic onlays. West. Chin. J. Stomatol. 2015, 33, 263–266. [Google Scholar] [CrossRef]
- Al Amri, M.D.; Al-Johany, S.; Sherfudhin, H.; Al Shammari, B.; Al Mohefer, S.; Al Saloum, M.; Al Qarni, H. Fracture resistance of endodontically treated mandibular first molars with conservative access cavity and different restorative techniques: An in vitro study. Aust. Endod. J. 2016, 42, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Merrill, T.C.; Mackey, T.; Luc, R.; Lung, D.; Naseem, A.; Abduo, J. Effect of chairside CAD/CAM restoration type on marginal fit accuracy: A comparison of crown, inlay and onlay restorations. Eur. J. Prosthodont. Restor. Dent. 2021, 29, 119–127. [Google Scholar] [PubMed]
- de Assis, C.; Lemos, C.; Gomes, J.; Vasconcelos, B.; Moraes, S.; Braz, R.; Pellizzer, E.P. Clinical Efficiency of Self-etching One-Step and Two-Step Adhesives in NCCL: A Systematic Review and Meta-analysis. Oper. Dent. 2020, 45, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, S.; Rebello de Sampaio, F.B.; Braga, M.M.; Sesma, N.; Özcan, M. Survival Rate of Resin and Ceramic Inlays, Onlays, and Overlays: A Systematic Review and Meta-analysis. J. Dent. Res. 2016, 95, 985–994. [Google Scholar] [CrossRef]
- Srimaneepong, V.; Heboyan, A.; Zafar, M.S.; Khurshid, Z.; Marya, A.; Fernandes, G.V.O.; Rokaya, D. Fixed Prosthetic Restorations and Periodontal Health: A Narrative Review. J. Funct. Biomater. 2022, 13, 15. [Google Scholar] [CrossRef]
- Abdulrahman, S.; Von See Mahm, C.; Talabani, R.; Abdulateef, D. Evaluation of the clinical success of four different types of lithium disilicate ceramic restorations: A retrospective study. BMC Oral Health 2021, 21, 625. [Google Scholar] [CrossRef]
- Piwowarczyk, A.; Lauer, H.C.; Sorensen, J.A. Microleakage of various cementing agents for full cast crowns. Dent. Mater. 2005, 21, 445–453. [Google Scholar] [CrossRef]
- Cvar, J.F.; Ryje, G. Reprint of criteria for the clinical evaluation of dental restorative materials. Clin. Oral Investig. 2005, 9, 215–232. [Google Scholar] [CrossRef]
- Yüksel, E.; Zaimoğlu, A. Influence of marginal fit and cement types on microleakage of all-ceramic crown systems. Braz. Oral Res. 2011, 25, 261–266. [Google Scholar] [CrossRef]
- Forberger, N.; Göhring, T.N. Influence of the type of post and core on in vitro marginal continuity, fracture resistance, and fracture mode of lithia disilicate-based all-ceramic crowns. J. Prosthet. Dent. 2008, 100, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Blunck, U.; Fischer, S.; Hajtó, J.; Frei, S.; Frankenberger, R. Ceramic laminate veneers: Effect of preparation design and ceramic thickness on fracture resistance and marginal quality in vitro. Clin. Oral Investig. 2020, 24, 2745–2754. [Google Scholar] [CrossRef] [PubMed]
- Abduo, J.; Sambrook, R.J. Longevity of ceramic onlays: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 193–215. [Google Scholar] [CrossRef]
- Sirous, S.; Navadeh, A.; Ebrahimgol, S.; Atri, F. Effect of preparation design on marginal adaptation and fracture strength of ceramic occlusal veneers: A systematic review. Clin. Exp. Dent. Res. 2022, 8, 1391–1403. [Google Scholar] [CrossRef]
- Fathpour, K.; Bazazzade, A.; Mirmohammadi, H. A Comparative Study of Cervical Composite Restorations Microleakage Using Dental Universal Bonding and Two-step Self-etch Adhesive. J. Contemp. Dent. Pract. 2021, 22, 1035–1040. [Google Scholar] [CrossRef]
- Duquia Rde, C.; Osinaga, P.W.; Demarco, F.F.; de VHabekost, L.; Conceição, E.N. Cervical microleakage in MOD restorations: In vitro comparison of indirect and direct composite. Oper. Dent. 2006, 31, 682–687. [Google Scholar] [CrossRef]
- Daghrery, A.; Yaman, P.; Lynch, M.; Dennison, J. Evaluation of micro-CT in the assessment of microleakage under bulk fill composite restorations. Am. J. Dent. 2022, 35, 128–132. [Google Scholar]
- Yoon, H.I.; Sohn, P.J.; Jin, S.; Elani, H.; Lee, S.J. Fracture Resistance of CAD/CAM-Fabricated Lithium Disilicate MOD Inlays and Onlays with Various Cavity Preparation Designs. J. Prosthodont. 2019, 28, e524–e529. [Google Scholar] [CrossRef] [PubMed]
- Falacho, R.I.; Marques, J.A.; Palma, P.J.; Roseiro, L.; Caramelo, F.; Ramos, J.C.; Guerra, F.; Blatz, M.B. Luting indirect restorations with resin cements versus composite resins: Effects of preheating and ultrasound energy on film thickness. J. Esthet. Restor. Dent. 2022, 34, 641–649. [Google Scholar] [CrossRef]
- de la Macorra, J.C.; Pradíes, G. Conventional and adhesive luting cements. Clin. Oral Investig. 2002, 6, 198–204. [Google Scholar] [CrossRef]
- Leung, G.K.; Wong, A.W.; Chu, C.H.; Yu, O.Y. Update on Dental Luting Materials. Dent. J. 2022, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Kirilova, J.; Kirov, D.; Petrova-Pashova, V. Five-year clinical study of indirect aesthetic restorations—Onlays. Medinfo 2023, 10, 1618–1624. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Kamposiora, P.; Dimitriadis, K.; Papavasiliou, G.; Zinelis, S. In vitro evaluation of CAD/CAM composite materials. J. Dent. 2023, 136, 104623. [Google Scholar] [CrossRef]
- Garoushi, S.; Barlas, D.; Vallittu, P.K.; Uctasli, M.B.; Lassila, L. Fracture behavior of short fiber-reinforced CAD/CAM inlay restorations after cyclic fatigue aging. Odontology 2024, 112, 138–147. [Google Scholar] [CrossRef]
- Belli, R.; Wendler, M.; de Ligny, D.; Cicconi, M.R.; Petschelt, A.; Peterlik, H.; Lohbauer, U. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent. Mater. 2017, 33, 84–98. [Google Scholar] [CrossRef]
- Brackett, M.G.; Lockwood, P.E.; Messer, R.L.; Lewis, J.B.; Bouillaguet, S.; Wataha, J.C. In vitro cytotoxic response to lithium disilicate dental ceramics. Dent. Mater. 2008, 24, 450–456. [Google Scholar] [CrossRef]
- Yancheva, S.; Vasileva, R. In vitro study of the marginal adaptation and microleakage in Class II restorations of conventional and matrix-modified composites. Dent. Med. 2013, 95, 19–28. [Google Scholar]
- Krämer, N.; Ebert, J.; Petschelt, A.; Frankenberger, R. Ceramic inlays bonded with two adhesives after 4 years. Dent. Mater. 2006, 22, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Fathy, H.; Hamama, H.H.; El-Wassefy, N.; Mahmoud, S.H. Clinical performance of resin-matrix ceramic partial coverage restorations: A systematic review. Clin. Oral Investig. 2022, 26, 3807–3822. [Google Scholar] [CrossRef] [PubMed]
- Thordrup, M. A 5-year clinical study of indirect and direct resin composite and ceramic inlays. Quintessence Int. 2001, 32, 199–205. [Google Scholar]
- Mangani, F.; Marini, S.; Barabanti, N.; Preti, A.; Cerutti, A. The success of indirect restorations in posterior teeth: A systematic review of the literature. Minerva Stomatol. 2015, 64, 231–240. [Google Scholar] [PubMed]
- Magne, P. Composite resins and bonded porcelain: The postamalgam era? J. Calif. Dent. Assoc. 2006, 34, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, S.; Goud, S.; Kumar, K.N.; Chukka, R.R.; Reddy, N. Ceramic Onlay: A Case Report. Cureus 2022, 14, e32641. [Google Scholar] [CrossRef] [PubMed]
- Politano, G.; Fabianelli, A.; Papacchini, F.; Cerutti, A. The use of bonded partial ceramic restorations to recover heavily compromised teeth. Int. J. Esthet. Dent. 2016, 11, 314–336. [Google Scholar] [PubMed]
- Coelho Santos, M.; Lauris, J.; Navarro, M. Clinical evaluation of ceramic inlays and onlays fabricated with two systems: Two-year clinical follow up. Oper. Dent. 2004, 29, 123–130. [Google Scholar]
- Hayashi, M.; Tsuchitani, Y.; Kawamura, Y.; Miura, M.; Takeshige, F.; Ebisu, S. Eight-year clinical evaluation of fired ceramic inlays. Oper. Dent. 2000, 25, 473–481. [Google Scholar]
- Holme, W. Gold versus ceramic—Which will last longer for posterior indirect restorations? Evid. Based Dent. 2022, 23, 166–167. [Google Scholar] [CrossRef]
- Gateva, N.; Kabaktchieva, R. Hybrid layer thickness in primary and permanent teeth—A comparison between total etch adhesives. J. IMAB 2012, 18, 191–199. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P. Buonocore memorial lecture. Adhesion growth and dentin: Current status and future challenges. Oper. Dent. 2003, 28, 215–235. [Google Scholar]
- Walshaw, P.; Tam, L.; McComb, D. Bond failure at dentin-composite interfaces with ‘single-bottle’ adhesives. J. Dent. 2003, 31, 117–125. [Google Scholar] [CrossRef]
- Tagtekin, D.; Ozyöney, G.; Yanikoglu, F. Two-year clinical evaluation of IPS Empress II ceramic onlays/inlays. Oper. Dent. 2009, 34, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.B.; Jain, A.K.; Rao, R.D.; Naik, B.D. Comparative evaluation of clinical performance of ceramic and resin inlays, onlays, and overlays: A systematic review and meta-analysis. J. Conserv. Dent. 2022, 25, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.; Freitas, M.C.; Azevedo, L.M.; Santos, G.C., Jr.; Navarro, M.F.; Francischone, C.E.; Mondelli, R.F. Clinical evaluation of ceramic inlays and onlays fabricated with two systems: 12-year follow-up. Clin. Oral Investig. 2016, 20, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.; Winter, A.; Lauer, H.C.; Kollmar, F.; Portscher-Kim, S.J.; Romanos, G.E. IPS e.max for All-Ceramic Restorations: Clinical Survival and Success Rates of Full-Coverage Crowns and Fixed Partial Dentures. Materials 2019, 12, 462. [Google Scholar] [CrossRef]
Period | 2nd Year | 5th Year | 10th Year | |
---|---|---|---|---|
Groups | ||||
Group I (n = 42) | n = 42 | n = 42 | n = 42 | |
Group II (n = 44) | n = 44 | n = 44 | n = 44 | |
Total | n = 86 | n = 86 | n = 86 |
Period | Criterion | 1 | 2 | 3 | 4 | 5 | 6 | 7 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grade | n | % | n | % | n | % | n | % | n | % | n | % | n | % | ||
2nd year | Alfa | 86 | 100 | 86 | 100 | 84 | 97.68 | 86 | 100 | 86 | 100 | 86 | 100 | 86 | 100 | <0.03 * |
Bravo | 0 | 0 | 0 | 0 | 2 | 2.32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
5th year | Alfa | 86 | 100 | 83 | 96.51 | 85 | 98.84 | 86 | 100 | 79 | 91.73 | 82 | 95.35 | 86 | 100 | <0.001 * |
Bravo | 0 | 0 | 3 | 3.49 | 1 | 1.16 | 0 | 0 | 5 | 5.95 | 3 | 3.49 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2.32 | 1 | 1.16 | 0 | 0 | ||
10th year | Alfa | 83 | 96.51 | 80 | 93.03 | 84 | 97.68 | 85 | 98.84 | 79 | 91.73 | 82 | 95.35 | 84 | 97.68 | <0.001 * |
Bravo | 3 | 3.49 | 6 | 6.97 | 2 | 2.32 | 1 | 1.16 | 3 | 3.49 | 1 | 1.16 | 2 | 2.32 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4.47 | 3 | 3.49 | 0 | 0 | ||
p-Value | <0.001 * | <0.005 * | <0.001 * | <0.001 * | <0.007 * | <0.001 * | <0.03 * |
Criterion | 1 | 2 | 3 | 4 | 5 | 6 | 7 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period 2nd year | Grade | n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
Group I Premolars (n = 42) | Alfa | 42 | 100 | 42 | 100 | 42 | 100 | 42 | 100 | 42 | 100 | 42 | 100 | 42 | 100 | <0.03 * |
Bravo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Group II Molars (n = 44) | Alfa | 44 | 100 | 44 | 100 | 42 | 95.45 | 44 | 100 | 44 | 100 | 44 | 100 | 44 | 100 | <0.03 * |
Bravo | 0 | 0 | 0 | 0 | 2 | 4.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Criterion | 1 | 2 | 3 | 4 | 5 | 6 | 7 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period 5th Year | Grade | n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
Group I Premolar (n = 42) | Alfa | 42 | 100 | 41 | 97.62 | 42 | 100 | 42 | 100 | 40 | 95.24 | 41 | 97.62 | 42 | 100 | <0.001 * |
Bravo | 0 | 0 | 1 | 2.38 | 0 | 0 | 0 | 0 | 2 | 4.76 | 1 | 2.38 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Group II Molars (n = 44) | Alfa | 44 | 100 | 42 | 95.45 | 43 | 97.73 | 44 | 100 | 39 | 88.64 | 41 | 93.18 | 44 | 100 | <0.001 * |
Bravo | 0 | 0 | 2 | 4.55 | 1 | 2.27 | 0 | 0 | 3 | 6.82 | 2 | 4.55 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4.54 | 1 | 2.27 | 0 | 0 |
Criterion | 1 | 2 | 3 | 4 | 5 | 6 | 7 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period 10th Year | Grade | n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
Group I Premolar (n = 42) | Alfa | 41 | 97.62 | 40 | 95.24 | 42 | 100 | 42 | 100 | 40 | 95.24 | 41 | 97.62 | 42 | 100 | < 0.001 * |
Bravo | 1 | 2.38 | 2 | 4.76 | 0 | 0 | 0 | 0 | 1 | 2.38 | 1 | 2.38 | 0 | 0 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2,38 | 1 | 2.38 | 0 | 0 | ||
Group II Molars (n = 44) | Alfa | 42 | 95.45 | 40 | 90.91 | 42 | 95.45 | 43 | 97.73 | 39 | 88.64 | 42 | 95.45 | 42 | 95.45 | <0.001 * |
Bravo | 2 | 4.55 | 4 | 9.09 | 2 | 4.55 | 1 | 2.27 | 3 | 6.82 | 0 | 0 | 2 | 4.55 | ||
Charlie | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4.54 | 2 | 4.55 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusiyska, A.; Dimova-Gabrovska, M.; Nikolova, N. Biomimetic Capabilities of Lithium Disilicate Glass-Ceramic Restorations on Posterior Teeth: Evaluation of the Long-Term Survival Rate—A 10-Year Follow-Up. Appl. Sci. 2024, 14, 9964. https://doi.org/10.3390/app14219964
Gusiyska A, Dimova-Gabrovska M, Nikolova N. Biomimetic Capabilities of Lithium Disilicate Glass-Ceramic Restorations on Posterior Teeth: Evaluation of the Long-Term Survival Rate—A 10-Year Follow-Up. Applied Sciences. 2024; 14(21):9964. https://doi.org/10.3390/app14219964
Chicago/Turabian StyleGusiyska, Angela, Mariana Dimova-Gabrovska, and Nikoleta Nikolova. 2024. "Biomimetic Capabilities of Lithium Disilicate Glass-Ceramic Restorations on Posterior Teeth: Evaluation of the Long-Term Survival Rate—A 10-Year Follow-Up" Applied Sciences 14, no. 21: 9964. https://doi.org/10.3390/app14219964
APA StyleGusiyska, A., Dimova-Gabrovska, M., & Nikolova, N. (2024). Biomimetic Capabilities of Lithium Disilicate Glass-Ceramic Restorations on Posterior Teeth: Evaluation of the Long-Term Survival Rate—A 10-Year Follow-Up. Applied Sciences, 14(21), 9964. https://doi.org/10.3390/app14219964