Acute Effects of Overload Running on Physiological and Biomechanical Variables in Trained Trail Runners
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Material and Testing
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Physiological Effects
4.2. Mechanical Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacBride-Stewart, S. Atmospheres, landscapes and nature: Off-road runners’ experiences of well-being. Health 2019, 23, 139–157. [Google Scholar] [CrossRef]
- Andersen, J.J. The State of Trail Running 2022. 2024. Available online: https://runrepeat.com/the-state-of-trail-running-2022#trail-running-participation-trends (accessed on 14 February 2024).
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J.S. Defining Off-road Running: A Position Statement from the Ultra Sports Science Foundation. Int. J. Sports Med. 2020, 41, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Sales, M.M.; Sousa, C.V.; da Silva Aguiar, S.; Knechtle, B.; Nikolaidis, P.T.; Alves, P.M.; Simões, H.G. An integrative perspective of the anaerobic threshold. Physiol. Behav. 2019, 205, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V.; Vieluf, S.; Janssen, T.I.; Heitkamp, H.C. Predicting Competition Performance in Short Trail Running Races with Lactate Thresholds. J. Hum. Kinet. 2019, 69, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Alvero-Cruz, J.R.; Parent Mathias, V.; Garcia Romero, J.; Carrillo de Albornoz-Gil, M.; Benítez-Porres, J.; Ordoñez, F.J.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Prediction of Performance in a Short Trail Running Race: The Role of Body Composition. Front. Physiol. 2019, 10, 1306. [Google Scholar] [CrossRef]
- Feser, E.H.; Macadam, P.; Cronin, J.B. The effects of lower limb wearable resistance on sprint running performance: A systematic review. Eur. J. Sport Sci. 2020, 20, 394–406. [Google Scholar] [CrossRef]
- Gleadhill, S.; Nagahara, R. Kinetic and kinematic changes during resisted sprinting due to towing three common parachute sizes. J. Sports Med. Phys. Fit. 2023, 63, 256–263. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Feser, E.H. Acute and longitudinal effects of weighted vest training on sprint-running performance: A systematic review. Sports Biomech. 2022, 21, 239–254. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Pereira, L.A.; Freitas, T.T.; Alcaraz, P.E.; Reis, V.P.; Guerriero, A.; Arruda, A.F.S.; Zabaloy, S.; Saez De Villarreal, E.; Loturco, I. Acute Effects of Progressive Sled Loading on Resisted Sprint Performance and Kinematics. J. Strength Cond. Res. 2022, 36, 1524–1531. [Google Scholar] [CrossRef]
- Cartón-Llorente, A.; Rubio-Peirotén, A.; Cardiel-Sánchez, S.; Roche-Seruendo, L.E.; Jaén-Carrillo, D. Training Specificity in Trail Running: A Single-Arm Trial on the Influence of Weighted Vest on Power and Kinematics in Trained Trail Runners. Sensors 2023, 23, 6411. [Google Scholar] [CrossRef]
- Cooke, C.B.; McDonagh, M.J.; Nevill, A.M.; Davies, C.T. Effects of load on oxygen intake in trained boys and men during treadmill running. J. Appl. Physiol. 1991, 71, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Hansen, K.; Kawamori, N.; McNair, P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008, 7, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.R.; Brughelli, M.E.; Cronin, J.B. Effects of vest loading on sprint kinetics and kinematics. J. Strength Cond. Res. 2014, 28, 1867–1874. [Google Scholar] [CrossRef]
- Promsri, A.; Deedphimai, S.; Promthep, P.; Champamuang, C. Effects of Different Wearable Resistance Placements on Running Stability. Sports 2024, 12, 45. [Google Scholar] [CrossRef]
- Field, A.P.; Gill, N.; Macadam, P.; Plews, D. Acute Metabolic Changes with Thigh-Positioned Wearable Resistances during Submaximal Running in Endurance-Trained Runners. Sports 2019, 7, 187. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Simperingham, K.D. The Effects of Wearable Resistance Training on Metabolic, Kinematic and Kinetic Variables During Walking, Running, Sprint Running and Jumping: A Systematic Review. Sports Med. 2017, 47, 887–906. [Google Scholar] [CrossRef]
- Thorstensson, A. Effects of moderate external loading on the aerobic demand of submaximal running in men and 10 year-old boys. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Hamad, M.J.; Alcaraz, P.E.; de Villarreal, E.S. Effects of Combined Uphill-Downhill Sprinting Versus Resisted Sprinting Methods on Sprint Performance: A Systematic Review and Meta-analysis. Sports Med. 2024, 54, 185–202. [Google Scholar] [CrossRef]
- Meyer, T.; Lucía, A.; Earnest, C.P.; Kindermann, W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters--theory and application. Int. J. Sports Med. 2005, 26 (Suppl. S1), S38–S48. [Google Scholar] [CrossRef]
- Poole, D.C.; Rossiter, H.B.; Brooks, G.A.; Gladden, L.B. The anaerobic threshold: 50+ years of controversy. J. Physiol. 2021, 599, 737–767. [Google Scholar] [CrossRef]
- Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Cartón-Llorente, A.; Ramírez-Campillo, R.; García-Pinillos, F. Mechanical Power in Endurance Running: A Scoping Review on Sensors for Power Output Estimation during Running. Sensors 2020, 20, 6482. [Google Scholar] [CrossRef] [PubMed]
- Cerezuela-Espejo, V.; Hernandez-Belmonte, A.; Courel-Ibanez, J.; Conesa-Ros, E.; Mora-Rodriguez, R.; Pallares, J.G. Are we ready to measure running power? Repeatability and concurrent validity of five commercial technologies. Eur. J. Sport Sci. 2020, 21, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Carton, A.; Roche Seruendo, L.E.; Jaén Carrillo, D.; Marcen-Cinca, N.; Pinillos, F. Absolute reliability and agreement between Stryd and RunScribe systems for the assessment of running power. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021, 235, 182–187. [Google Scholar]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ros, F.E.; Vaquero-Cristóbal, R.; Marfell-Jones, M. Protocolo Internacional Para la Valoración Antropométrica; Sociedad Internacional para el Avance de la Cineantropometría (ISAK): Murcia, Spain, 2019. [Google Scholar]
- Crouter, S.E.; LaMunion, S.R.; Hibbing, P.R.; Kaplan, A.S.; Bassett, D.R., Jr. Accuracy of the Cosmed K5 portable calorimeter. PLoS ONE 2019, 14, e0226290. [Google Scholar] [CrossRef]
- Dafoe, W. Principles of Exercise Testing and Interpretation. Can. J. Cardiol 2007, 23, 274. [Google Scholar]
- Meyer, K.; Hajric, R.; Westbrook, S.; Samek, L.; Lehmann, M.; Schwaibold, M.; Betz, P.; Roskamm, H. Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: Methodological problems. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 72, 387–393. [Google Scholar] [CrossRef]
- Poole, D.C.; Wilkerson, D.P.; Jones, A.M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 2008, 102, 403–410. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Running power meters and theoretical models based on laws of physics: Effects of environments and running conditions. Physiol. Behav. 2020, 223, 112972. [Google Scholar] [CrossRef]
- Péronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar] [PubMed]
- Hamlin, M.J.; Draper, N.; Blackwell, G.; Shearman, J.P.; Kimber, N.E. Determination of maximal oxygen uptake using the bruce or a novel athlete-led protocol in a mixed population. J. Hum. Kinet. 2012, 31, 97–104. [Google Scholar] [CrossRef]
- Miller, G.S.; Dougherty, P.J.; Green, J.S.; Crouse, S.F. Comparison of cardiorespiratory responses of moderately trained men and women using two different treadmill protocols. J. Strength Cond. Res. 2007, 21, 1067–1071. [Google Scholar] [PubMed]
- Gimenez, P.; Kerhervé, H.; Messonnier, L.A.; Féasson, L.; Millet, G.Y. Changes in the energy cost of running during a 24-h treadmill exercise. Med. Sci. Sports Exerc. 2013, 45, 1807–1813. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake Vo(2max): Vo(2peak) is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp. Physiol. 2007, 92, 347–355. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Riveiro-Bozada, A.; Carballo-López, J.; Álvarez-Yates, T.; López-Chicharro, J. A Maximal Incremental Test in Cyclists Causes Greater Peripheral Fatigue in Biceps Femoris. Res. Q. Exerc. Sport 2020, 91, 460–468. [Google Scholar] [CrossRef]
- Cher, P.H.; Stewart, I.B.; Worringham, C.J. Minimum cost of transport in human running is not ubiquitous. Med. Sci. Sports Exerc. 2015, 47, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Sabater Pastor, F.; Varesco, G.; Besson, T.; Koral, J.; Feasson, L.; Millet, G.Y. Degradation of energy cost with fatigue induced by trail running: Effect of distance. Eur. J. Appl. Physiol. 2021, 121, 1665–1675. [Google Scholar] [CrossRef]
- Lazzer, S.; Taboga, P.; Salvadego, D.; Rejc, E.; Simunic, B.; Narici, M.V.; Buglione, A.; Giovanelli, N.; Antonutto, G.; Grassi, B.; et al. Factors affecting metabolic cost of transport during a multi-stage running race. J. Exp. Biol. 2014, 217, 787–795. [Google Scholar]
- van Rassel, C.R.; Ajayi, O.O.; Sales, K.M.; Griffiths, J.K.; Fletcher, J.R.; Edwards, W.B.; MacInnis, M.J. Is Running Power a Useful Metric? Quantifying Training Intensity and Aerobic Fitness Using Stryd Running Power Near the Maximal Lactate Steady State. Sensors 2023, 23, 8729. [Google Scholar] [CrossRef]
Variable | Mean ± SD |
---|---|
Age (years) | 37.8 ± 5.9 |
Height (m) | 176.3 ± 4.7 |
Body mass (kg) | 72.2 ± 4.9 |
Σ 6 skinfolds (a. u.) | 65.8 ± 15.0 |
Training volume (km·w−1) | 49.7 ± 20.7 |
Time in 10 km race (min) | 40.4 ± 3.0 |
Peak Values | +0% BM | +5% BM | +10% BM | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | ||
O2 (mL·min−1·kg−1) | 59.4 ± 6.7 | 55.7–63.1 | 59.1 ± 5.7 | 56.0–62.3 | 57.0 ± 5.5 | 54.0–60.1 | |
Power (W) | 338 ± 27 | 323–353 | 337 ± 32 | 320–355 | 346 ± 35 | 327–366 | |
nPower (W·kg−1) | 4.6 ± 0.4 | 4.4–4.9 | 4.7 ± 0.3 | 4.5–4.9 | 4.8 ± 0.4 | 4.6–5.0 | |
Speed (km·h−1) | 17.1 ± 1.2 | 16.4–17.7 | 16.5 ± 1.0 | 15.9–17.0 | 15.9 ± 1.0 | 15.3–16.4 | |
RER | 1.09 ± 0.08 | 1.04–1.14 | 1.08 ± 0.06 | 1.04–1.12 | 1.07 ± 0.09 | 1.02–1.12 | |
Lactate (mmol/L) | 11.4 ± 4.1 | 9.1–13.6 | 11.0 ± 3.4 | 9.1–12.8 | 12.6 ± 4.6 | 10.1–15.1 | |
CoT (J·kg−1·m−1) | 4.2 ± 0.6 | 3.9–4.6 | 4.3 ± 0.5 | 4.1–4.6 | 4.4 ± 0.4 | 4.1–4.6 | |
VT1 | |||||||
O2 (mL·min−1·kg−1) | 35.1 ± 3.9 | 33.2–37.4 | 34.3 ± 3.4 | 32.5–36.6 | 34.2 ± 3.9 | 31.8–36.0 | |
rO2 (%) | 59.4 ± 0.3 | 57.7–61.1 | 58.9 ± 0.3 | 57.5–60.4 | 60.0 ± 0.3 | 58.1–61.0 | |
Power (W) | 200 ± 23 | 187–213 | 204 ± 16 | 195–212 | 208 ± 23 | 195–220 | |
nPower (W·kg−1) | 2.7 ± 0.4 | 2.5–2.9 | 2.8 ± 0.2 | 2.7–2.9 | 2.9 ± 0.3 | 2.7–3.0 | |
Speed (km·h−1) | 9.5 ± 0.9 | 9.0–10.0 | 9.2 ± 0.6 | 8.9–9.5 | 8.9 ± 0.8 | 8.4–9.3 | |
RER | 0.82 ± 0.04 | 0.80–0.84 | 0.82 ± 0.06 | 0.78–0.85 | 0.81 ± 0. 06 | 0.77–0.84 | |
CoT (J·kg−1·m−1) | 4.5 ± 0.6 | 4.2–4.9 | 4.5 ± 0.4 | 4.3–4.8 | 4.7 ± 0.6 | 4.3–5.0 | |
VT2 | |||||||
O2 (mL·min−1·kg−1) | 49.6 ± 5.1 | 46.8–52.4 | 49.0 ± 4.0 | 46.8–51.2 | 47.9 ± 4.6 | 45.3–50.4 | |
rO2 (%) | 83.6 ± 0.3 | 81.9–85.3 | 83.7 ± 0.3 | 81.9–85.6 | 83.3 ± 0.3 | 81.5–85.2 | |
Power (W) | 277 ± 27 | 263–292 | 278 ± 20 | 268–289 | 291 ± 17 | 282–300 | |
nPower (W·kg−1) | 3.8 ± 0.4 | 3.6–4.0 | 3.8 ± 0.2 | 3.7–4.0 | 4.0 ± 0.3 | 3.9–4.2 | |
Speed (km·h−1) | 14.0 ± 1.1 | 13.4–14.6 | 13.1 ± 0.7 | 12.7–13.5 | 12.7 ± 1.0 | 12.1–13.2 | |
RER | 0.94 ± 0.03 | 0.93–0.96 | 0.93 ± 0.05 | 0.90–0.96 | 0.96 ± 0. 07 | 0.91–0.99 | |
CoT (J·kg−1·m−1) | 4.3 ± 0.5 | 4.0–4.6 | 4.4 ± 0.3 | 4.1–4.7 | 4.6 ± 0.5 | 4.3–4.9 |
Peak Values | Extra load p-Value (ES) | +0 vs. +5%BM p-Value (ES) | +5 vs. +10%BM p-Value (ES) | +0 vs. +10%BM p-Value (ES) | |
---|---|---|---|---|---|
O2 (mL·min−1·kg−1) | 0.008 * (0.29) | 1.000 (0.01) | 0.076 (0.31) | 0.025 * (0.40) | |
Power (W) | 0.243 (0.10) | 1.000 (0.00) | 0.326 (0.17) | 0.679 (0.10) | |
nPower (W·kg−1) | 0.268 (0.20) | 1.000 (0.01) | 0.204 (0.22) | 0.140 (0.25) | |
Speed (km·h−1) | <0.001 ** (0.54) | 0.069 (0.32) | 0.008 * (0.49) | <0.001 ** (0.67) | |
RER | 0.476 (0.05) | 1.000 (0.02) | 1.000 (0.03) | 0.675 (0.10) | |
Lactate (mmol/L) | 0.207 (0.11) | 1.000 (0.02) | 0.340 (0.17) | 0.749 (0.09) | |
CoT (J·kg−1·m−1) | 0.185 (0.11) | 0.390 (0.16) | 1.000 (0.01) | 0.539 (0.12) | |
VT1 | |||||
O2 (mL·min−1·kg−1) | 0.198 (0.11) | 0.492 (0.13) | 1.000 (0.01) | 0.436 (0.15) | |
rO2 (%) | 0.170 (0.12) | 0.798 (0.09) | 0.131 (0.26) | 1.000 (0.02) | |
Power (W) | 0.248 (0.09) | 1.000 (0.06) | 0.941 (0.07) | 0.537 (0.13) | |
nPower (W·kg−1) | 0.102 (0.16) | 0.546 (0.12) | 0.636 (0.11) | 0.251 (0.20) | |
Speed (km·h−1) | 0.003 * (0.34) | 0.311 (0.18) | 0.058 (0.33) | 0.021 * (0.42) | |
RER | 0.333 (0.12) | 1.000 (0.01) | 0.829 (0.09) | 0.440 (0.10) | |
CoT (J·kg−1·m−1) | 0.604 (0.07) | 1.000 (0.00) | 0.379 (0.07) | 0.883 (0.04) | |
VT2 | |||||
O2 (mL·min−1·kg−1) | 0.047 * (0.20) | 1.000 (0.06) | 0.445 (0.14) | 0.050 (0.34) | |
rO2 (%) | 0.618 (0.03) | 1.000 (0.00) | 1.000 (0.05) | 1.000 (0.04) | |
Power (W) | 0.021 * (0.27) | 1.000 (0.00) | 0.108 (0.28) | 0.019 * (0.42) | |
nPower (W·kg−1) | 0.012 * (0.32) | 1.000 (0.03) | 0.058 (0.33) | 0.006 * (0.51) | |
Speed (km·h−1) | <0.001 ** (0.62) | 0.084 (0.30) | 0.001 * (0.59) | <0.001 ** (0.70) | |
RER | 0.499 (0.05) | 1.000 (0.04) | 0.880 (0.08) | 1.000 (0.02) | |
CoT (J·kg−1·m−1) | 0.013 * (0.27) | 1.000 (0.02) | 0.070 (0.32) | 0.042 * (0.36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartón-Llorente, A.; Rubio-Peirotén, A.; Cardiel-Sánchez, S.; Díez-Martínez, P.; Roche-Seruendo, L.E.; Jaén-Carrillo, D. Acute Effects of Overload Running on Physiological and Biomechanical Variables in Trained Trail Runners. Appl. Sci. 2024, 14, 9853. https://doi.org/10.3390/app14219853
Cartón-Llorente A, Rubio-Peirotén A, Cardiel-Sánchez S, Díez-Martínez P, Roche-Seruendo LE, Jaén-Carrillo D. Acute Effects of Overload Running on Physiological and Biomechanical Variables in Trained Trail Runners. Applied Sciences. 2024; 14(21):9853. https://doi.org/10.3390/app14219853
Chicago/Turabian StyleCartón-Llorente, Antonio, Alberto Rubio-Peirotén, Silvia Cardiel-Sánchez, Pablo Díez-Martínez, Luis Enrique Roche-Seruendo, and Diego Jaén-Carrillo. 2024. "Acute Effects of Overload Running on Physiological and Biomechanical Variables in Trained Trail Runners" Applied Sciences 14, no. 21: 9853. https://doi.org/10.3390/app14219853
APA StyleCartón-Llorente, A., Rubio-Peirotén, A., Cardiel-Sánchez, S., Díez-Martínez, P., Roche-Seruendo, L. E., & Jaén-Carrillo, D. (2024). Acute Effects of Overload Running on Physiological and Biomechanical Variables in Trained Trail Runners. Applied Sciences, 14(21), 9853. https://doi.org/10.3390/app14219853