The Effects of Laser Power on the Performance and Microstructure of Inconel 718 Formed by Selective Laser Melting
Abstract
:1. Introduction
2. Sample Preparation and Experimental Methods
2.1. Materials and Powder
2.2. Sample Preparation
2.3. Experimental Methods
3. Experiment and Result Analysis
3.1. Phase Analysis
3.2. Analysis of Density and Molten Pool Morphology
3.3. Microstructural Analysis
3.4. Texture and Grain Boundary Analysis
3.5. Mechanical Property Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kruth, J.P.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622. [Google Scholar] [CrossRef]
- Hussein, A.; Hao, L.; Yan, C.; Everson, R. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. (1980–2015) 2013, 52, 638–647. [Google Scholar] [CrossRef]
- Mullen, L.; Stamp, R.C.; Brooks, W.K.; Jones, E.; Sutcliffe, C.J. Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89B, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, Y.; Wang, D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Des. 2013, 49, 545–552. [Google Scholar] [CrossRef]
- De Bartolomeis, A.; Newman, S.T.; Jawahir, I.S.; Biermann, D.; Shokrani, A. Future research directions in the machining of Inconel 718. J. Mater. Process. Technol. 2021, 297, 117260. [Google Scholar] [CrossRef]
- Ni, M.; Chen, C.; Wang, X.; Wang, P.; Li, R.; Zhang, X.; Zhou, K. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater. Sci. Eng. A 2017, 701, 344–351. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, P.; Liu, Z.; Feng, Z.; Wang, C.; Guo, Y. Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy. Addit. Manuf. 2018, 21, 567–578. [Google Scholar] [CrossRef]
- Hosseini, E.; Popovich, V.A. A review of mechanical properties of additively manufactured Inconel 718. Addit. Manuf. 2019, 30, 100877. [Google Scholar] [CrossRef]
- Jinoop, A.N.; Paul, C.P.; Mishra, S.K.; Bindra, K.S. Laser Additive Manufacturing using directed energy deposition of Inconel-718 wall structures with tailored characteristics. Vacuum 2019, 166, 270–278. [Google Scholar] [CrossRef]
- Xia, M.; Gu, D.; Ma, C.; Chen, H.; Zhang, H. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting. J. Alloys Compd. 2018, 747, 684–695. [Google Scholar] [CrossRef]
- Liu, P.; Hu, J.; Sun, S.; Feng, K.; Zhang, Y.; Cao, M. Microstructural evolution and phase transformation of Inconel 718 alloys fabricated by selective laser melting under different heat treatment. J. Manuf. Process. 2019, 39, 226–232. [Google Scholar] [CrossRef]
- Park, J.H.; Bang, G.B.; Lee, K.-A.; Son, Y.; Kim, W.R.; Kim, H.G. Effect on microstructural and mechanical properties of Inconel 718 superalloy fabricated by selective laser melting with rescanning by low energy density. J. Mater. Res. Technol. 2021, 10, 785–796. [Google Scholar] [CrossRef]
- Liu, F.; Hu, W.; Jia, J. Micro pore defects and tensile properties of high density laser selective melting Inconel 718 alloy. Rare Met. Mater. Eng. 2021, 50, 3684–3692. [Google Scholar]
- Zheng, J.; Jin, T.N.; Fang, X. Effect of scanning spacing on microstructure of IN718 alloy by selective laser melting. Heat Treat. Met. 2021, 46, 127–132. [Google Scholar]
- Wei, J.; Wu, M.; Han, J.-t. Influence mechanism of scanning strategy on surface quality of Inconel 718 formed by SLM. Appl. Laser 2020, 40, 621–625. [Google Scholar]
- Xu, Y.; Zhang, R.; Xiao, Z. Quantitative Characterization of particle shape of Inconel 718 Alloy powder and optimization of SLM forming process. Powder Metall. Mater. Sci. Eng. 2020, 25, 465–474. [Google Scholar]
- Liu, Z.; Kim, H.; Liu, W.; Cong, W.; Jiang, Q.; Zhang, H. Influence of energy density on macro/micro structures and mechanical properties of as-deposited Inconel 718 parts fabricated by laser engineered net shaping. J. Manuf. Process. 2019, 42, 96–105. [Google Scholar] [CrossRef]
- Borisov, E.V.; Popovich, V.A.; Popovich, A.A.; Sufiiarov, V.S.; Zhu, J.N.; Starikov, K.A. Selective laser melting of Inconel 718 under high laser power. Mater. Today Proc. 2020, 30, 784–788. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Pan, Y. Influence of laser power and scan speed on the microstructure and properties of GH4169 alloy prepared by selective laser melting. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 033064. [Google Scholar] [CrossRef]
- Guo, C.; Li, S.; Shi, S.; Li, X.; Hu, X.; Zhu, Q.; Ward, R.M. Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion. J. Mater. Process. Technol. 2020, 285, 116788. [Google Scholar] [CrossRef]
- Benoit, M.J.; Mazur, M.; Easton, M.A.; Brandt, M. Effect of alloy composition and laser powder bed fusion parameters on the defect formation and mechanical properties of Inconel 625. Int. J. Adv. Manuf. Technol. 2021, 114, 915–927. [Google Scholar] [CrossRef]
- Khorasani, A.; Gibson, I.; Awan, U.S.; Ghaderi, A. The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit. Manuf. 2019, 25, 176–186. [Google Scholar] [CrossRef]
- Volpato, G.M.; Tetzlaff, U.; Fredel, M.C. A comprehensive literature review on laser powder bed fusion of Inconel superalloys. Addit. Manuf. 2022, 55, 102871. [Google Scholar] [CrossRef]
- Jaladurgam, N.R.; Li, H.; Kelleher, J.; Persson, C.; Steuwer, A.; Colliander, M.H. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction. Acta Mater. 2020, 183, 182–195. [Google Scholar] [CrossRef]
- Guo, M.; Gu, D.; Xi, L.; Zhang, H.; Zhang, J.; Yang, J. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 2019, 84, 105025. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Yang, Y.; Bai, Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 2016, 100, 291–299. [Google Scholar] [CrossRef]
- Olivier, A.; Imade, K.; Patrice, P.; Penot, J.D.; Saintier, N.; Pessard, E.; Terris, T.D.; Dupuy, C. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Technol. 2018, 264, 21–31. [Google Scholar]
- Liu, J.; Song, Y.; Chen, C.; Wang, X.; Li, H.; Wang, J.; Guo, K. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater. Des. 2020, 186, 108355. [Google Scholar] [CrossRef]
- Debroy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, H.; Wang, X. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting. Mater. Sci. Eng. A 2018, 713, 195–205. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Wen, S.; Wei, Q.; Yan, C.; Shi, Y. Crystal orientation, crystallographic texture and phase evolution in the Ti–45Al–2Cr–5Nb alloy processed by selective laser melting. Mater. Charact. 2016, 113, 125–133. [Google Scholar] [CrossRef]
- Chen, H.; Gu, D.; Dai, D.; Xia, M.; Ma, C. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting. Mater. Lett. 2018, 227, 128–131. [Google Scholar] [CrossRef]
- Liu, S.Y.; Li, H.Q.; Qin, C.X.; Zong, R.; Fang, X.Y. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater. Des. 2020, 191, 108642. [Google Scholar] [CrossRef]
- Kang, J.; Yi, J.; Wang, T.; Wang, X.; Feng, T.; Feng, Y.L.; Wu, P.Y. Effect of laser power and scanning speed on the microstructure and mechanical properties of SLM fabricated Inconel 718 specimens. Mater. Sci. Eng. Int. J. 2019, 3, 72–76. [Google Scholar] [CrossRef]
Elements | Ni | Cr | Fe | Nb | Mo | Ti | Co | Si | Mn |
---|---|---|---|---|---|---|---|---|---|
Inconel 718 | 50.4 | 19.6 | 19.403 | 5.641 | 3.268 | 1.193 | 0.213 | 0.309 | 0.154 |
Sample | P/W | φ |
---|---|---|
1 | 260 | 0.271 |
2 | 285 | 0.297 |
3 | 310 | 0.323 |
4 | 335 | 0.349 |
5 | 360 | 0.375 |
Laser Power/W | 2θ Location/deg | Intensity/cps | FWHM/deg | DC/nm |
---|---|---|---|---|
260 | 43.49 | 5948 | 0.16 | 52.99 |
285 | 43.46 | 6745 | 0.16 | 53.45 |
310 | 43.48 | 4652 | 0.17 | 50.29 |
335 | 43.44 | 2670 | 0.17 | 50.30 |
360 | 43.43 | 3901 | 0.16 | 53.44 |
Samples | Laser Power/W | Relative Density/% |
---|---|---|
1 | 260 | 99.31 ± 0.08 |
2 | 285 | 99.82 ± 0.08 |
3 | 310 | 99.75 ± 0.08 |
4 | 335 | 99.54 ± 0.08 |
5 | 360 | 99.79 ± 0.08 |
Laser Power | 310 W | 335 W | 360 W |
---|---|---|---|
Grain size/μm | 47.49 | 50.57 | 47.95 |
Fraction of HAGBs | 35.4% | 47.0% | 31.5% |
Fraction of LAGBs | 17.8% | 15.2% | 20.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, L.; Yang, L.; Liu, T.; Miao, J.; Zang, Y.; Zhang, S. The Effects of Laser Power on the Performance and Microstructure of Inconel 718 Formed by Selective Laser Melting. Appl. Sci. 2024, 14, 9686. https://doi.org/10.3390/app14219686
Wang Y, Gao L, Yang L, Liu T, Miao J, Zang Y, Zhang S. The Effects of Laser Power on the Performance and Microstructure of Inconel 718 Formed by Selective Laser Melting. Applied Sciences. 2024; 14(21):9686. https://doi.org/10.3390/app14219686
Chicago/Turabian StyleWang, Yalong, Lei Gao, Liyuan Yang, Tao Liu, Jianyin Miao, Yong Zang, and Sheng Zhang. 2024. "The Effects of Laser Power on the Performance and Microstructure of Inconel 718 Formed by Selective Laser Melting" Applied Sciences 14, no. 21: 9686. https://doi.org/10.3390/app14219686
APA StyleWang, Y., Gao, L., Yang, L., Liu, T., Miao, J., Zang, Y., & Zhang, S. (2024). The Effects of Laser Power on the Performance and Microstructure of Inconel 718 Formed by Selective Laser Melting. Applied Sciences, 14(21), 9686. https://doi.org/10.3390/app14219686