Fractal Aspects of Human S100 Protein Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yáñez, M.; Gil-Longo, J.; Campos-Toimil, M. Calcium Binding Proteins. In Calcium Signaling; Islam, M.d.S., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 461–482. ISBN 978-94-007-2888-2. [Google Scholar]
- Lewit-Bentley, A.; Réty, S. EF-Hand Calcium-Binding Proteins. Curr. Opin. Struct. Biol. 2000, 10, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.R.; Thulin, E.; Fagan, P.A.; Forsén, S.; Chazin, W.J. The EF-Hand Domain: A Globally Cooperative Structural Unit. Protein Sci. 2002, 11, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Carafoli, E. The Calcium-Signalling Saga: Tap Water and Protein Crystals. Nat. Rev. Mol. Cell Biol. 2003, 4, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Uchikoga, N.; Takahashi, S.; Ke, R.; Sonoyama, M.; Mitaku, S. Electric Charge Balance Mechanism of Extended Soluble Proteins. Protein Sci. 2005, 14, 74–80. [Google Scholar] [CrossRef]
- Isvoran, A.; Craescu, C.T.; Alexov, E. Electrostatic Control of the Overall Shape of Calmodulin: Numerical Calculations. Eur. Biophys. J. 2007, 36, 225–237. [Google Scholar] [CrossRef]
- Mouawad, L.; Isvoran, A.; Quiniou, E.; Craescu, C.T. What Determines the Degree of Compactness of a Calcium-Binding Protein? FEBS J. 2009, 276, 1082–1093. [Google Scholar] [CrossRef]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 Proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, W.; Kirberger, M.; Lee, H.-W.; Ayalasomayajula, G.; Yang, J.J. Prediction of EF-Hand Calcium-Binding Proteins and Analysis of Bacterial EF-Hand Proteins. Proteins 2006, 65, 643–655. [Google Scholar] [CrossRef]
- Donato, R. Functional Roles of S100 Proteins, Calcium-Binding Proteins of the EF-Hand Type. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 1999, 1450, 191–231. [Google Scholar] [CrossRef]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Y.; Xu, R.; Xiao, Y. Nonlinear Analysis of Sequence Symmetry of Beta-Trefoil Family Proteins. Chaos Solitons Fractals 2005, 25, 491–497. [Google Scholar] [CrossRef]
- Mao, A.H.; Lyle, N.; Pappu, R.V. Describing Sequence-Ensemble Relationships for Intrinsically Disordered Proteins. Biochem. J. 2013, 449, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Marchi, J.; Galpern, E.A.; Espada, R.; Ferreiro, D.U.; Walczak, A.M.; Mora, T. Size and Structure of the Sequence Space of Repeat Proteins. PLoS Comput. Biol. 2019, 15, e1007282. [Google Scholar] [CrossRef]
- Pande, V.S.; Grosberg, A.Y.; Tanaka, T. Nonrandomness in Protein Sequences: Evidence for a Physically Driven Stage of Evolution? Proc. Natl. Acad. Sci. USA 1994, 91, 12972–12975. [Google Scholar] [CrossRef]
- Weiss, O.; Herzel, H. Correlations in Protein Sequences and Property Codes. J. Theor. Biol. 1998, 190, 341–353. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, Y. Nonlinear Deterministic Structures and the Randomness of Protein Sequences. Chaos Solitons Fractals 2003, 17, 895–900. [Google Scholar] [CrossRef]
- Hemmerich, C.; Kim, S. A Study of Residue Correlation within Protein Sequences and Its Application to Sequence Classification. EURASIP J. Bioinform. Syst. Biol. 2007, 2007, 1–9. [Google Scholar] [CrossRef]
- Ciorsac, A.; Craciun, D.; Ostafe, V.; Isvoran, A. Nonlinear Correlations in the Hydrophobicity and Average Flexibility along the Glycolytic Enzymes Sequences. Chaos Solitons Fractals 2011, 44, 191–197. [Google Scholar] [CrossRef]
- Dewey, T.G. Fractals in Molecular Biophysics; Topics in Physical Chemistry Series; Oxford University Press: Oxford, UK, 1997; ISBN 1429404248. [Google Scholar]
- Daniel, M.; Baskar, S.; Latha, M.M. Fractal Dimension and Tertiary Structure of Proteins. Phys. Scr. 1999, 60, 270–276. [Google Scholar] [CrossRef]
- Isvoran, A. Describing Some Properties of Adenylat Kinase Using Fractal Concepts. Chaos Solitons Fractals 2004, 19, 141–145. [Google Scholar] [CrossRef]
- Isvoran, A.; Pitulice, L.; Craescu, C.T.; Chiriac, A. Fractal Aspects of Calcium Binding Protein Structures. Chaos Solitons Fractals 2008, 35, 960–966. [Google Scholar] [CrossRef]
- Pitulice, L.; Isvoran, A.; Craescu, C.T.; Chiriac, A. Scaling Properties of the Radius of Gyration and Surface Area for EF-Hand Calcium Binding Proteins. Chaos Solitons Fractals 2009, 40, 684–690. [Google Scholar] [CrossRef]
- Lewis, M.; Rees, D.C. Fractal Surfaces of Proteins. Science (1979) 1985, 230, 1163–1165. [Google Scholar] [CrossRef]
- Fedorov, B.A.; Fedorov, B.B.; Schmidt, P.W. An Analysis of the Fractal Properties of the Surfaces of Globular Proteins. J. Chem. Phys. 1993, 99, 4076–4083. [Google Scholar] [CrossRef]
- Pettit, F.K.; Bowie, J.U. Protein Surface Roughness and Small Molecular Binding Sites 1 1Edited by F. Cohen. J. Mol. Biol. 1999, 285, 1377–1382. [Google Scholar] [CrossRef]
- Kaczor, A.A.; Guixà-González, R.; Carrió, P.; Obiol-Pardo, C.; Pastor, M.; Selent, J. Fractal Dimension as a Measure of Surface Roughness of G Protein-Coupled Receptors: Implications for Structure and Function. J. Mol. Model. 2012, 18, 4465–4475. [Google Scholar] [CrossRef]
- Banerji, A.; Navare, C. Fractal Nature of Protein Surface Roughness: A Note on Quantification of Change of Surface Roughness in Active Sites, before and after Binding. J. Mol. Recognit. 2013, 26, 201–214. [Google Scholar] [CrossRef]
- Todoroff, N.; Kunze, J.; Schreuder, H.; Hessler, G.; Baringhaus, K.; Schneider, G. Fractal Dimensions of Macromolecular Structures. Mol. Inform. 2014, 33, 588–596. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Ren, W.; Wang, J.; Kaneko, K. The Statistical Trends of Protein Evolution: A Lesson from AlphaFold Database. Mol. Biol. Evol. 2022, 39, msac197. [Google Scholar] [CrossRef]
- Peng, X.; Qi, W.; Wang, M.; Su, R.; He, Z. Backbone Fractal Dimension and Fractal Hybrid Orbital of Protein Structure. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3373–3381. [Google Scholar] [CrossRef]
- Arteca, G.A. Scaling Regimes of Molecular Size and Self-Entanglements in Very Compact Proteins. Phys. Rev. E 1995, 51, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Leitner, D.M. Anomalous Diffusion of Vibrational Energy in Proteins. J. Chem. Phys. 2003, 119, 12673–12679. [Google Scholar] [CrossRef]
- Enright, M.B.; Leitner, D.M. Mass Fractal Dimension and the Compactness of Proteins. Phys. Rev. E 2005, 71, 11912. [Google Scholar] [CrossRef]
- Johansen, D.; Trewhella, J.; Goldenberg, D.P. Fractal Dimension of an Intrinsically Disordered Protein: Small-angle X-ray Scattering and Computational Study of the Bacteriophage λ N Protein. Protein Sci. 2011, 20, 1955–1970. [Google Scholar] [CrossRef]
- Peng, X.; Qi, W.; Su, R.; He, Z. Describing Some Characters of Serine Proteinase Using Fractal Analysis. Chaos Solitons Fractals 2012, 45, 1017–1023. [Google Scholar] [CrossRef]
- Sendker, F.L.; Lo, Y.K.; Heimerl, T.; Bohn, S.; Persson, L.J.; Mais, C.-N.; Sadowska, W.; Paczia, N.; Nußbaum, E.; del Carmen Sánchez Olmos, M.; et al. Emergence of Fractal Geometries in the Evolution of a Metabolic Enzyme. Nature 2024, 628, 894–900. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega. Curr. Protoc. Bioinform. 2014, 48, 3.13.1–3.13.16. [Google Scholar] [CrossRef]
- Felder, C.E.; Prilusky, J.; Silman, I.; Sussman, J.L. A Server and Database for Dipole Moments of Proteins. Nucleic Acids Res. 2007, 35, W512–W521. [Google Scholar] [CrossRef]
- Fraczkiewicz, R.; Braun, W. Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules. J. Comput. Chem. 1998, 19, 319–333. [Google Scholar] [CrossRef]
- Donato, R. S100: A Multigenic Family of Calcium-Modulated Proteins of the EF-Hand Type with Intracellular and Extracellular Functional Roles. Int. J. Biochem. Cell Biol. 2001, 33, 637–668. [Google Scholar] [CrossRef] [PubMed]
- Deloulme, J.C.; Assard, N.; Mbele, G.O.; Mangin, C.; Kuwano, R.; Baudier, J. S100A6 and S100A11 Are Specific Targets of the Calcium- and Zinc-Binding S100B Protein in Vivo. J. Biol. Chem. 2000, 275, 35302–35310. [Google Scholar] [CrossRef] [PubMed]
- Craciun, D.; Pitulice, L.; Ciorsac, A.; Ostafe, V.; Isvoran, A. Proteins Surface Roughness Analysis. Comparison of Crystallographic and NMR Structures. Rom. Rep. Phys. 2012, 64, 116–126. [Google Scholar]
- Nowakowski, M.; Ruszczyńska-Bartnik, K.; Budzińska, M.; Jaremko, Ł.; Jaremko, M.; Zdanowski, K.; Bierzyński, A.; Ejchart, A. Impact of Calcium Binding and Thionylation of S100A1 Protein on Its Nuclear Magnetic Resonance-Derived Structure and Backbone Dynamics. Biochemistry 2013, 52, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Das Gupta, S.; Hu, X.; Karavelas, T.; Luchinat, C.; Parigi, G.; Yuan, J. Solution Structure and Dynamics of S100A5 in the Apo and Ca2+-Bound States. JBIC J. Biol. Inorg. Chem. 2009, 14, 1097–1107. [Google Scholar] [CrossRef]
- Arnesano, F.; Banci, L.; Bertini, I.; Fantoni, A.; Tenori, L.; Viezzoli, M.S. Structural Interplay between Calcium(II) and Copper(II) Binding to S100A13 Protein. Angew. Chem. Int. Ed. Engl. 2005, 44, 6341–6344. [Google Scholar] [CrossRef]
- Santamaria-Kisiel, L.; Rintala-Dempsey, A.C.; Shaw, G.S. Calcium-Dependent and -Independent Interactions of the S100 Protein Family. Biochem. J. 2006, 396, 201–214. [Google Scholar] [CrossRef]
- Babini, E.; Bertini, I.; Borsi, V.; Calderone, V.; Hu, X.; Luchinat, C.; Parigi, G. Structural Characterization of Human S100A16, a Low-Affinity Calcium Binder. JBIC J. Biol. Inorg. Chem. 2011, 16, 243–256. [Google Scholar] [CrossRef]
- Sun, B.; Kekenes-Huskey, P.M. Molecular Basis of S100A1 Activation and Target Regulation Within Physiological Cytosolic Ca2+ Levels. Front. Mol. Biosci. 2020, 7, 77. [Google Scholar] [CrossRef]
- Cho, C.C.; Hung, K.-W.; Gorja, D.R.; Yu, C. The Solution Structure of Human Calcium-Bound S100A4 Mutated at Four Cysteine Loci. J. Biomol. NMR 2015, 62, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Harman, J.L.; Reardon, P.N.; Costello, S.M.; Warren, G.D.; Phillips, S.R.; Connor, P.J.; Marqusee, S.; Harms, M.J. Evolution Avoids a Pathological Stabilizing Interaction in the Immune Protein S100A9. Proc. Natl. Acad. Sci. USA 2022, 119, e2208029119. [Google Scholar] [CrossRef] [PubMed]
S100 Protein | PDB ID | Mutation | Ds | Predicted Conformation | Polar Surface Area (Å2) | Apolar Surface Area (Å2) |
---|---|---|---|---|---|---|
S100A1 | 2LLS | CYS85SER | 2.297 | E | 3810.35 | 4998.32 |
2LHL | GLN32GLU | 2.493 | E | 4783.09 | 6294.13 | |
2LP3 | - | 2.324 | E | 4211.80 | 6495.46 | |
2LP2 | - | 2.427 | E | 4165.02 | 6131.12 | |
2LUX | CYS85MET | 2.434 | E | 4785.64 | 7403.02 | |
2LLT | - | 2.341 | E | 4113.49 | 5218.42 | |
2LLU | - | 2.384 | E | 4047.06 | 5415.18 | |
2L0P | - | 2.404 | E | 4656.96 | 5958.00 | |
S100A2 | 2RGI * | - | 2.293 | S | 4011.84 | 5140.48 |
4DUQ * | - | 2.259 | S | 3254.44 | 5311.59 | |
S100A3 | 1KSO * | - | 2.260 | E | 4198.00 | 5147.16 |
S100A4 | 2MRD | CYS3SER, CYS76SER, CYS81SER CYS86SER | 2.308 | E | 3807.43 | 5890.73 |
2LNK | - | 2.313 | E | 5342.46 | 6370.31 | |
2Q91 * | - | 2.211 | S | 3905.40 | 6774.69 | |
4ETO * | - | 2.218 | E | 3480.64 | 5758.14 | |
4CFR * | CYS3SER, CYS81SER, CYS86SER, PHE45TRP | 2.173 | E | 3931.81 | 7387.15 | |
S100A5 | 2KAX | - | 2.264 | S | 3400.17 | 6222.59 |
2KAY | - | 2.181 | E | 3067.51 | 6735.71 | |
S100A6 | 2M1K | - | 2.293 | E | 3436.93 | 6168.41 |
1K9K * | - | 2.241 | E | 3441.54 | 5840.82 | |
S100A7 | 1PSR * | - | 2.293 | S | 4123.34 | 6442.49 |
S100A8 | 1MR8 * | - | 2.195 | E | 3275.41 | 6483.19 |
S100A9 | 5I8N | CYS3SER | 2.282 | E | 4169.94 | 6875.82 |
7UI5 | CYS3SER, MET63PHE | 2.251 | S | 4539.31 | 7843.24 | |
S100A10 | 1BT6 * | - | 2.227 | E | 3901.40 | 6789.86 |
4FTG * | - | 2.197 | E | 4224.03 | 6780.49 | |
S100A11 | 2LUC | - | 2.191 | E | 4433.48 | 6171.41 |
S100A12 | 2M9G | - | 2.316 | E | 4081.35 | 5146.88 |
S100A13 | 1YUS | - | 2.288 | S | 3983.00 | 7302.80 |
1YUU | - | 2.251 | S | 3796.32 | 7324.13 | |
2WCE * | - | 2.215 | E | 3087.44 | 5655.49 | |
1E8A * | - | 2.184 | E | 3558.21 | 6036.97 | |
2KOT | - | 2.337 | E | 4901.58 | 6465.85 | |
2KI4 | - | 2.499 | E | 4494.66 | 8141.09 | |
2LE9 | - | 2.472 | E | 4270.70 | 6761.99 | |
2K8M | - | 2.385 | E | 4502.92 | 7698.37 | |
2L5X | - | 2.484 | E | 4274.37 | 6338.57 | |
2EGD * | - | 2.151 | E | 3212.75 | 5977.91 | |
S100A14 | 2M0R | - | 2.387 | S | 6073.11 | 6620.80 |
S100A16 | 2L50 | - | 2.312 | S | 4566.04 | 6246.56 |
2L51 | - | 2.471 | S | 4032.70 | 6849.12 | |
S100B | 2PRU | - | 2.392 | E | 4099.66 | 5284.99 |
1UWO | - | 2.432 | E | 4659.90 | 5458.57 | |
1MQ1 | - | 2.427 | E | 4326.62 | 5672.52 | |
2M49 | - | 2.177 | E | 4970.71 | 5694.94 | |
3D0Y * | - | 2.296 | E | 3642.37 | 5585.78 | |
3D10 * | - | 2.234 | E | 4030.30 | 6016.60 | |
3HCM * | - | 2.324 | E | 3992.63 | 5783.58 | |
5CSI * | - | 2.207 | E | 3479.18 | 5846.94 | |
S100P | 1OZO | - | 2.225 | E | 2933.71 | 5805.56 |
2MJW | - | 2.297 | E | 3501.60 | 6270.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petreuș, D.E.; Isvoran, A. Fractal Aspects of Human S100 Protein Structures. Appl. Sci. 2024, 14, 9540. https://doi.org/10.3390/app14209540
Petreuș DE, Isvoran A. Fractal Aspects of Human S100 Protein Structures. Applied Sciences. 2024; 14(20):9540. https://doi.org/10.3390/app14209540
Chicago/Turabian StylePetreuș, David Emanuel, and Adriana Isvoran. 2024. "Fractal Aspects of Human S100 Protein Structures" Applied Sciences 14, no. 20: 9540. https://doi.org/10.3390/app14209540
APA StylePetreuș, D. E., & Isvoran, A. (2024). Fractal Aspects of Human S100 Protein Structures. Applied Sciences, 14(20), 9540. https://doi.org/10.3390/app14209540