Fractal Aspects of Human S100 Protein Structures
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yáñez, M.; Gil-Longo, J.; Campos-Toimil, M. Calcium Binding Proteins. In Calcium Signaling; Islam, M.d.S., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 461–482. ISBN 978-94-007-2888-2. [Google Scholar]
- Lewit-Bentley, A.; Réty, S. EF-Hand Calcium-Binding Proteins. Curr. Opin. Struct. Biol. 2000, 10, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.R.; Thulin, E.; Fagan, P.A.; Forsén, S.; Chazin, W.J. The EF-Hand Domain: A Globally Cooperative Structural Unit. Protein Sci. 2002, 11, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Carafoli, E. The Calcium-Signalling Saga: Tap Water and Protein Crystals. Nat. Rev. Mol. Cell Biol. 2003, 4, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Uchikoga, N.; Takahashi, S.; Ke, R.; Sonoyama, M.; Mitaku, S. Electric Charge Balance Mechanism of Extended Soluble Proteins. Protein Sci. 2005, 14, 74–80. [Google Scholar] [CrossRef]
- Isvoran, A.; Craescu, C.T.; Alexov, E. Electrostatic Control of the Overall Shape of Calmodulin: Numerical Calculations. Eur. Biophys. J. 2007, 36, 225–237. [Google Scholar] [CrossRef]
- Mouawad, L.; Isvoran, A.; Quiniou, E.; Craescu, C.T. What Determines the Degree of Compactness of a Calcium-Binding Protein? FEBS J. 2009, 276, 1082–1093. [Google Scholar] [CrossRef]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 Proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, W.; Kirberger, M.; Lee, H.-W.; Ayalasomayajula, G.; Yang, J.J. Prediction of EF-Hand Calcium-Binding Proteins and Analysis of Bacterial EF-Hand Proteins. Proteins 2006, 65, 643–655. [Google Scholar] [CrossRef]
- Donato, R. Functional Roles of S100 Proteins, Calcium-Binding Proteins of the EF-Hand Type. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 1999, 1450, 191–231. [Google Scholar] [CrossRef]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Y.; Xu, R.; Xiao, Y. Nonlinear Analysis of Sequence Symmetry of Beta-Trefoil Family Proteins. Chaos Solitons Fractals 2005, 25, 491–497. [Google Scholar] [CrossRef]
- Mao, A.H.; Lyle, N.; Pappu, R.V. Describing Sequence-Ensemble Relationships for Intrinsically Disordered Proteins. Biochem. J. 2013, 449, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Marchi, J.; Galpern, E.A.; Espada, R.; Ferreiro, D.U.; Walczak, A.M.; Mora, T. Size and Structure of the Sequence Space of Repeat Proteins. PLoS Comput. Biol. 2019, 15, e1007282. [Google Scholar] [CrossRef]
- Pande, V.S.; Grosberg, A.Y.; Tanaka, T. Nonrandomness in Protein Sequences: Evidence for a Physically Driven Stage of Evolution? Proc. Natl. Acad. Sci. USA 1994, 91, 12972–12975. [Google Scholar] [CrossRef]
- Weiss, O.; Herzel, H. Correlations in Protein Sequences and Property Codes. J. Theor. Biol. 1998, 190, 341–353. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, Y. Nonlinear Deterministic Structures and the Randomness of Protein Sequences. Chaos Solitons Fractals 2003, 17, 895–900. [Google Scholar] [CrossRef]
- Hemmerich, C.; Kim, S. A Study of Residue Correlation within Protein Sequences and Its Application to Sequence Classification. EURASIP J. Bioinform. Syst. Biol. 2007, 2007, 1–9. [Google Scholar] [CrossRef]
- Ciorsac, A.; Craciun, D.; Ostafe, V.; Isvoran, A. Nonlinear Correlations in the Hydrophobicity and Average Flexibility along the Glycolytic Enzymes Sequences. Chaos Solitons Fractals 2011, 44, 191–197. [Google Scholar] [CrossRef]
- Dewey, T.G. Fractals in Molecular Biophysics; Topics in Physical Chemistry Series; Oxford University Press: Oxford, UK, 1997; ISBN 1429404248. [Google Scholar]
- Daniel, M.; Baskar, S.; Latha, M.M. Fractal Dimension and Tertiary Structure of Proteins. Phys. Scr. 1999, 60, 270–276. [Google Scholar] [CrossRef]
- Isvoran, A. Describing Some Properties of Adenylat Kinase Using Fractal Concepts. Chaos Solitons Fractals 2004, 19, 141–145. [Google Scholar] [CrossRef]
- Isvoran, A.; Pitulice, L.; Craescu, C.T.; Chiriac, A. Fractal Aspects of Calcium Binding Protein Structures. Chaos Solitons Fractals 2008, 35, 960–966. [Google Scholar] [CrossRef]
- Pitulice, L.; Isvoran, A.; Craescu, C.T.; Chiriac, A. Scaling Properties of the Radius of Gyration and Surface Area for EF-Hand Calcium Binding Proteins. Chaos Solitons Fractals 2009, 40, 684–690. [Google Scholar] [CrossRef]
- Lewis, M.; Rees, D.C. Fractal Surfaces of Proteins. Science (1979) 1985, 230, 1163–1165. [Google Scholar] [CrossRef]
- Fedorov, B.A.; Fedorov, B.B.; Schmidt, P.W. An Analysis of the Fractal Properties of the Surfaces of Globular Proteins. J. Chem. Phys. 1993, 99, 4076–4083. [Google Scholar] [CrossRef]
- Pettit, F.K.; Bowie, J.U. Protein Surface Roughness and Small Molecular Binding Sites 1 1Edited by F. Cohen. J. Mol. Biol. 1999, 285, 1377–1382. [Google Scholar] [CrossRef]
- Kaczor, A.A.; Guixà-González, R.; Carrió, P.; Obiol-Pardo, C.; Pastor, M.; Selent, J. Fractal Dimension as a Measure of Surface Roughness of G Protein-Coupled Receptors: Implications for Structure and Function. J. Mol. Model. 2012, 18, 4465–4475. [Google Scholar] [CrossRef]
- Banerji, A.; Navare, C. Fractal Nature of Protein Surface Roughness: A Note on Quantification of Change of Surface Roughness in Active Sites, before and after Binding. J. Mol. Recognit. 2013, 26, 201–214. [Google Scholar] [CrossRef]
- Todoroff, N.; Kunze, J.; Schreuder, H.; Hessler, G.; Baringhaus, K.; Schneider, G. Fractal Dimensions of Macromolecular Structures. Mol. Inform. 2014, 33, 588–596. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Ren, W.; Wang, J.; Kaneko, K. The Statistical Trends of Protein Evolution: A Lesson from AlphaFold Database. Mol. Biol. Evol. 2022, 39, msac197. [Google Scholar] [CrossRef]
- Peng, X.; Qi, W.; Wang, M.; Su, R.; He, Z. Backbone Fractal Dimension and Fractal Hybrid Orbital of Protein Structure. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3373–3381. [Google Scholar] [CrossRef]
- Arteca, G.A. Scaling Regimes of Molecular Size and Self-Entanglements in Very Compact Proteins. Phys. Rev. E 1995, 51, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Leitner, D.M. Anomalous Diffusion of Vibrational Energy in Proteins. J. Chem. Phys. 2003, 119, 12673–12679. [Google Scholar] [CrossRef]
- Enright, M.B.; Leitner, D.M. Mass Fractal Dimension and the Compactness of Proteins. Phys. Rev. E 2005, 71, 11912. [Google Scholar] [CrossRef]
- Johansen, D.; Trewhella, J.; Goldenberg, D.P. Fractal Dimension of an Intrinsically Disordered Protein: Small-angle X-ray Scattering and Computational Study of the Bacteriophage λ N Protein. Protein Sci. 2011, 20, 1955–1970. [Google Scholar] [CrossRef]
- Peng, X.; Qi, W.; Su, R.; He, Z. Describing Some Characters of Serine Proteinase Using Fractal Analysis. Chaos Solitons Fractals 2012, 45, 1017–1023. [Google Scholar] [CrossRef]
- Sendker, F.L.; Lo, Y.K.; Heimerl, T.; Bohn, S.; Persson, L.J.; Mais, C.-N.; Sadowska, W.; Paczia, N.; Nußbaum, E.; del Carmen Sánchez Olmos, M.; et al. Emergence of Fractal Geometries in the Evolution of a Metabolic Enzyme. Nature 2024, 628, 894–900. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega. Curr. Protoc. Bioinform. 2014, 48, 3.13.1–3.13.16. [Google Scholar] [CrossRef]
- Felder, C.E.; Prilusky, J.; Silman, I.; Sussman, J.L. A Server and Database for Dipole Moments of Proteins. Nucleic Acids Res. 2007, 35, W512–W521. [Google Scholar] [CrossRef]
- Fraczkiewicz, R.; Braun, W. Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules. J. Comput. Chem. 1998, 19, 319–333. [Google Scholar] [CrossRef]
- Donato, R. S100: A Multigenic Family of Calcium-Modulated Proteins of the EF-Hand Type with Intracellular and Extracellular Functional Roles. Int. J. Biochem. Cell Biol. 2001, 33, 637–668. [Google Scholar] [CrossRef] [PubMed]
- Deloulme, J.C.; Assard, N.; Mbele, G.O.; Mangin, C.; Kuwano, R.; Baudier, J. S100A6 and S100A11 Are Specific Targets of the Calcium- and Zinc-Binding S100B Protein in Vivo. J. Biol. Chem. 2000, 275, 35302–35310. [Google Scholar] [CrossRef] [PubMed]
- Craciun, D.; Pitulice, L.; Ciorsac, A.; Ostafe, V.; Isvoran, A. Proteins Surface Roughness Analysis. Comparison of Crystallographic and NMR Structures. Rom. Rep. Phys. 2012, 64, 116–126. [Google Scholar]
- Nowakowski, M.; Ruszczyńska-Bartnik, K.; Budzińska, M.; Jaremko, Ł.; Jaremko, M.; Zdanowski, K.; Bierzyński, A.; Ejchart, A. Impact of Calcium Binding and Thionylation of S100A1 Protein on Its Nuclear Magnetic Resonance-Derived Structure and Backbone Dynamics. Biochemistry 2013, 52, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Das Gupta, S.; Hu, X.; Karavelas, T.; Luchinat, C.; Parigi, G.; Yuan, J. Solution Structure and Dynamics of S100A5 in the Apo and Ca2+-Bound States. JBIC J. Biol. Inorg. Chem. 2009, 14, 1097–1107. [Google Scholar] [CrossRef]
- Arnesano, F.; Banci, L.; Bertini, I.; Fantoni, A.; Tenori, L.; Viezzoli, M.S. Structural Interplay between Calcium(II) and Copper(II) Binding to S100A13 Protein. Angew. Chem. Int. Ed. Engl. 2005, 44, 6341–6344. [Google Scholar] [CrossRef]
- Santamaria-Kisiel, L.; Rintala-Dempsey, A.C.; Shaw, G.S. Calcium-Dependent and -Independent Interactions of the S100 Protein Family. Biochem. J. 2006, 396, 201–214. [Google Scholar] [CrossRef]
- Babini, E.; Bertini, I.; Borsi, V.; Calderone, V.; Hu, X.; Luchinat, C.; Parigi, G. Structural Characterization of Human S100A16, a Low-Affinity Calcium Binder. JBIC J. Biol. Inorg. Chem. 2011, 16, 243–256. [Google Scholar] [CrossRef]
- Sun, B.; Kekenes-Huskey, P.M. Molecular Basis of S100A1 Activation and Target Regulation Within Physiological Cytosolic Ca2+ Levels. Front. Mol. Biosci. 2020, 7, 77. [Google Scholar] [CrossRef]
- Cho, C.C.; Hung, K.-W.; Gorja, D.R.; Yu, C. The Solution Structure of Human Calcium-Bound S100A4 Mutated at Four Cysteine Loci. J. Biomol. NMR 2015, 62, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Harman, J.L.; Reardon, P.N.; Costello, S.M.; Warren, G.D.; Phillips, S.R.; Connor, P.J.; Marqusee, S.; Harms, M.J. Evolution Avoids a Pathological Stabilizing Interaction in the Immune Protein S100A9. Proc. Natl. Acad. Sci. USA 2022, 119, e2208029119. [Google Scholar] [CrossRef] [PubMed]
S100 Protein | PDB ID | Mutation | Ds | Predicted Conformation | Polar Surface Area (Å2) | Apolar Surface Area (Å2) |
---|---|---|---|---|---|---|
S100A1 | 2LLS | CYS85SER | 2.297 | E | 3810.35 | 4998.32 |
2LHL | GLN32GLU | 2.493 | E | 4783.09 | 6294.13 | |
2LP3 | - | 2.324 | E | 4211.80 | 6495.46 | |
2LP2 | - | 2.427 | E | 4165.02 | 6131.12 | |
2LUX | CYS85MET | 2.434 | E | 4785.64 | 7403.02 | |
2LLT | - | 2.341 | E | 4113.49 | 5218.42 | |
2LLU | - | 2.384 | E | 4047.06 | 5415.18 | |
2L0P | - | 2.404 | E | 4656.96 | 5958.00 | |
S100A2 | 2RGI * | - | 2.293 | S | 4011.84 | 5140.48 |
4DUQ * | - | 2.259 | S | 3254.44 | 5311.59 | |
S100A3 | 1KSO * | - | 2.260 | E | 4198.00 | 5147.16 |
S100A4 | 2MRD | CYS3SER, CYS76SER, CYS81SER CYS86SER | 2.308 | E | 3807.43 | 5890.73 |
2LNK | - | 2.313 | E | 5342.46 | 6370.31 | |
2Q91 * | - | 2.211 | S | 3905.40 | 6774.69 | |
4ETO * | - | 2.218 | E | 3480.64 | 5758.14 | |
4CFR * | CYS3SER, CYS81SER, CYS86SER, PHE45TRP | 2.173 | E | 3931.81 | 7387.15 | |
S100A5 | 2KAX | - | 2.264 | S | 3400.17 | 6222.59 |
2KAY | - | 2.181 | E | 3067.51 | 6735.71 | |
S100A6 | 2M1K | - | 2.293 | E | 3436.93 | 6168.41 |
1K9K * | - | 2.241 | E | 3441.54 | 5840.82 | |
S100A7 | 1PSR * | - | 2.293 | S | 4123.34 | 6442.49 |
S100A8 | 1MR8 * | - | 2.195 | E | 3275.41 | 6483.19 |
S100A9 | 5I8N | CYS3SER | 2.282 | E | 4169.94 | 6875.82 |
7UI5 | CYS3SER, MET63PHE | 2.251 | S | 4539.31 | 7843.24 | |
S100A10 | 1BT6 * | - | 2.227 | E | 3901.40 | 6789.86 |
4FTG * | - | 2.197 | E | 4224.03 | 6780.49 | |
S100A11 | 2LUC | - | 2.191 | E | 4433.48 | 6171.41 |
S100A12 | 2M9G | - | 2.316 | E | 4081.35 | 5146.88 |
S100A13 | 1YUS | - | 2.288 | S | 3983.00 | 7302.80 |
1YUU | - | 2.251 | S | 3796.32 | 7324.13 | |
2WCE * | - | 2.215 | E | 3087.44 | 5655.49 | |
1E8A * | - | 2.184 | E | 3558.21 | 6036.97 | |
2KOT | - | 2.337 | E | 4901.58 | 6465.85 | |
2KI4 | - | 2.499 | E | 4494.66 | 8141.09 | |
2LE9 | - | 2.472 | E | 4270.70 | 6761.99 | |
2K8M | - | 2.385 | E | 4502.92 | 7698.37 | |
2L5X | - | 2.484 | E | 4274.37 | 6338.57 | |
2EGD * | - | 2.151 | E | 3212.75 | 5977.91 | |
S100A14 | 2M0R | - | 2.387 | S | 6073.11 | 6620.80 |
S100A16 | 2L50 | - | 2.312 | S | 4566.04 | 6246.56 |
2L51 | - | 2.471 | S | 4032.70 | 6849.12 | |
S100B | 2PRU | - | 2.392 | E | 4099.66 | 5284.99 |
1UWO | - | 2.432 | E | 4659.90 | 5458.57 | |
1MQ1 | - | 2.427 | E | 4326.62 | 5672.52 | |
2M49 | - | 2.177 | E | 4970.71 | 5694.94 | |
3D0Y * | - | 2.296 | E | 3642.37 | 5585.78 | |
3D10 * | - | 2.234 | E | 4030.30 | 6016.60 | |
3HCM * | - | 2.324 | E | 3992.63 | 5783.58 | |
5CSI * | - | 2.207 | E | 3479.18 | 5846.94 | |
S100P | 1OZO | - | 2.225 | E | 2933.71 | 5805.56 |
2MJW | - | 2.297 | E | 3501.60 | 6270.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petreuș, D.E.; Isvoran, A. Fractal Aspects of Human S100 Protein Structures. Appl. Sci. 2024, 14, 9540. https://doi.org/10.3390/app14209540
Petreuș DE, Isvoran A. Fractal Aspects of Human S100 Protein Structures. Applied Sciences. 2024; 14(20):9540. https://doi.org/10.3390/app14209540
Chicago/Turabian StylePetreuș, David Emanuel, and Adriana Isvoran. 2024. "Fractal Aspects of Human S100 Protein Structures" Applied Sciences 14, no. 20: 9540. https://doi.org/10.3390/app14209540
APA StylePetreuș, D. E., & Isvoran, A. (2024). Fractal Aspects of Human S100 Protein Structures. Applied Sciences, 14(20), 9540. https://doi.org/10.3390/app14209540