Blockchain-Based Federated Learning: A Survey and New Perspectives
Abstract
:1. Introduction
2. Research Methodology
2.1. Sample Extraction
2.2. Content Analysis Coding
2.3. Research Steps
3. Blockchain vs. Federated Learning
3.1. Why Blockchain Empowers Federated Learning
3.2. Drawbacks of Federated Learning
3.2.1. Privacy Protection
- Privacy leakage: In the FL framework, client devices upload raw data to the central server for model training, which may lead to the leakage of sensitive business data. In addition, if the central node obtains the information uploaded by other nodes to infer important information, it will also lead to data privacy leakage.
- Poison attack: Malicious actors corrupt machine learning predictions by uploading samples or models with viruses to a central server. Additionally, dishonest players may delay transactions or terminate contracts for their own benefit at the expense of honest players, thus adversely affecting the global model [49].
3.2.2. Incentive Mechanism
- Lack of motivation: FL assumes that every local device voluntarily contributes data resources, but this is impractical. Participants lack motivation to perform model training as they apply their own data and computing resources. Selfish mobile devices will be unwilling to participate in model learning without fair financial compensation.
- Improper incentive management: Due to the decentralized nature of FL, workers may deviate from the agreement. In addition, there is a shortage of theoretical discussion on the distribution of rewards, there may be subjective judgment factors that lead to unfair distribution of profits, and the distribution of the behavior itself did not give specific rewards and punishment measures.
3.2.3. Robustness and Efficiency
- Single-point failure: FL relies on a central server that is vulnerable to malicious activity, causing global model updates to fail [50]. Moreover, if the central server is compromised, the entire system faces a collapse.
- Barrier of defense: Due to the lack of clear attack standards, FL frameworks lack defensive capability and are vulnerable to attacks, resulting in model updates being tampered by malicious agents. Likewise, FL lacks the ability to backtrack malicious clients, and the existence of malicious clients can also lead to model performance degradation and even training failure.
- Not censoring: Most existing federated learning systems are combined with centralized coordinators without providing any clear transparency and source mechanism for the generated models.
- Robust performance: Malicious or lazy devices in FL may migrate fake models or refuse to share models for profit, reducing the efficiency and reliability required for federated learning systems.
- Network overload: Federated learning (FL) is a decentralized learning method that breaks away from the traditional centralized learning. FL learns locally on each device and incrementally improves the learning model through interaction with a central server. However, it causes network overload due to the limited communication bandwidth and the participation of a large number of users [51].
3.3. Reasons Why Blockchain Enables Federated Learning
3.3.1. Information Sharing
3.3.2. Privacy Storage
3.3.3. Reputation Incentives
3.3.4. System Security
3.4. The Possibility of Combining Blockchain with Federated Learning
4. Blockchain-Based Federated Learning: State-of-the-Art
4.1. Model Classification for Blockchain-Based Federated Learning
4.1.1. Smart Contract
4.1.2. Consensus Algorithm
4.1.3. Digital Signature
4.1.4. Hash Algorithm
4.1.5. Peer-to-Peer Networking
4.2. Application Direction of Blockchain-Enabled Federated Learning
4.2.1. Incentive Mechanisms
4.2.2. Defense Mechanisms
4.2.3. Privacy Mechanisms
4.2.4. Robust Mechanisms
4.2.5. Global Mechanisms
4.2.6. Transmission Mechanisms
4.2.7. Audit Mechanisms
4.3. Application Scenarios of Blockchain-Based Federated Learning
4.4. Potential Problems and Solutions
4.4.1. How to Improve the Efficiency of Federated Learning in Blockchain
4.4.2. How to Reduce the Additional Communication Overhead Introduced by the Iterative Process of Federated Learning
4.4.3. How to Ensure the Privacy of Data Storage and Exchange on the Chain
5. Discussion and Future Outlook
5.1. Security of the BFL
5.2. The Incentive of BFL
5.3. The Efficiency of BFL
5.4. Advantages of Smart Contracts and Consensus Algorithm in BFL
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Lauderdale, FL, USA, 20–22 April 2017; PMLR: London, UK, 2017; pp. 1273–1282. [Google Scholar] [CrossRef]
- Konecny, J.; McMahan, H.; Yu, F.; Richtarik, P.; Suresh, A.; Bacon, D. Federated learning: Strategies for improving communication efficiency. arXiv 2016, arXiv:1610.05492. [Google Scholar] [CrossRef]
- AbdulRahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2020, 8, 5476–5497. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on federated learning: Challenges and applications. Int. J. Mach. Learn. Cybern. 2022, 14, 513–535. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A. Blockchain for secure and decentralized artificial intelligence in cybersecurity: A comprehensive review. Blockchain Res. Appl. 2024, 5, 100193. [Google Scholar] [CrossRef]
- Makridakis, S.; Christodoulou, K. Blockchain: Current Challenges and Future Prospects/Applications. Future Internet 2019, 11, 258. [Google Scholar] [CrossRef]
- Gabrielli, E.; Pica, G.; Tolomei, G. A Survey on Decentralized Federated Learning. arXiv 2023, arXiv:2308.04604. [Google Scholar] [CrossRef]
- Narule, Y.S.; Thakre, K.S. Privacy preservation using optimized Federated Learning: A critical survey. Intell. Decis. Technol. 2024, 18, 135–149. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Trans. Industr. Inform. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. p. 21260. Available online: https://cdn.nakamotoinstitute.org/docs/bitcoin.pdf (accessed on 14 September 2024).
- Wang, X.; Zhu, H.; Ning, Z.; Guo, L.; Zhang, Y. Blockchain Intelligence for Internet of Vehicles: Challenges and Solutions. IEEE Commun. Surv. Tutor. 2023, 25, 2325–2355. [Google Scholar] [CrossRef]
- Singh, M.; Kim, S. Blockchain Based Intelligent Vehicle Data sharing Framework. arXiv 2017, arXiv:1708.09721. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Towards an Optimized BlockChain for IoT. In Proceedings of the Second International Conference on Internet-of-Things Design and Implementation, New York, NY, USA, 18–21 April 2017; ACM: New York, NY, USA, 2017; pp. 173–178. [Google Scholar] [CrossRef]
- Nanda, S.; Panda, S.; Dash, M. Medical supply chain integrated with blockchain and IoT to track the logistics of medical products. Multimed Tools Appl. 2023, 82, 32917–32939. [Google Scholar] [CrossRef] [PubMed]
- Taherdoost, H. The Role of Blockchain in Medical Data Sharing. Cryptography 2023, 7, 36. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Kang, J.; Iliyasu, A.M.; Niyato, D.; El-Latif, A.A.A. A Secure Federated Learning Framework for 5G Networks. IEEE Wirel. Commun. 2020, 27, 24–31. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, Q.; Zhu, J.; Li, D. Blockchain Empowered Reliable Federated Learning by Worker Selection: A Trustworthy Reputation Evaluation Method. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 29 March 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, Z.; Wan, J.; Yin, L.; Cao, Z.; Luo, T.; Wang, B. A blockchain-based audit approach for encrypted data in federated learning. Digit. Commun. Netw. 2022, 8, 614–624. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Feng, G.; Niu, X.; Qin, S. Blockchain Assisted Federated Learning for Enabling Network Edge Intelligence. IEEE Netw. 2023, 37, 96–102. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Q.; Yu, Q.; Li, Z.; Liu, Y.; Lo, S.K.; Chen, S.; Xu, X.; Zhu, L. Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT. IEEE Internet Things J. 2021, 8, 5926–5937. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Elahi, H.; Zhang, D.; Tan, Y.; Chen, J.; Zhang, Y. A Blockchain-based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems. IEEE Internet Things J. 2023, 10, 6574–6585. [Google Scholar] [CrossRef]
- Zhang, P.; Hong, Y.; Kumar, N.; Alazab, M.; Alshehri, M.D.; Jiang, C. BC-EdgeFL: A Defensive Transmission Model Based on Blockchain-Assisted Reinforced Federated Learning in IIoT Environment. IEEE Trans. Industr. Inform. 2022, 18, 3551–3561. [Google Scholar] [CrossRef]
- Ayaz, F.; Sheng, Z.; Tian, D.; Guan, Y.L. A Blockchain Based Federated Learning for Message Dissemination in Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 1927–1940. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain Empowered Asynchronous Federated Learning for Secure Data Sharing in Internet of Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [Google Scholar] [CrossRef]
- Chai, H.; Leng, S.; Chen, Y.; Zhang, K. A Hierarchical Blockchain-Enabled Federated Learning Algorithm for Knowledge Sharing in Internet of Vehicles. IEEE trans. Intell. Transp. Syst. 2021, 22, 3975–3986. [Google Scholar] [CrossRef]
- Alotaibi, J.; Alazzawi, L. PPIoV: A Privacy Preserving-Based Framework for IoV-Fog Environment Using Federated Learning and Blockchain. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; IEEE: New York, NY, USA, 2022; pp. 597–603. [Google Scholar] [CrossRef]
- Alzubi, J.A.; Alzubi, O.A.; Singh, A.; Ramachandran, M. Cloud-IIoT-Based Electronic Health Record Privacy-Preserving by CNN and Blockchain-Enabled Federated Learning. IEEE Trans. Industr. Inform. 2023, 19, 1080–1087. [Google Scholar] [CrossRef]
- Passerat-Palmbach, J.; Farnan, T.; McCoy, M.; Harris, J.D.; Manion, S.T.; Flannery, H.L.; Gleim, B. Blockchain-orchestrated machine learning for privacy preserving federated learning in electronic health data. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Toronto, ON, Canada, 3–6 May 2020; IEEE: New York, NY, USA, 2020; pp. 550–555. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, W.; Ai, Z.; Xu, G.; Zhao, L.; Tian, Z. A Blockchain-empowered Federated Learning in Healthcare-based Cyber Physical Systems. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2685–2696. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, A.A.; Kumar, J.; Zakria; Golilarz, N.A.; Zhang, S.; Ting, Y.; Zheng, C.; Wang, W. Blockchain-Federated-Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging. IEEE Sens. J. 2021, 21, 16301–16314. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, J.; Man, K.L.; Ma, J.; Peng, Z. A Systematic Literature Review of Blockchain-based Federated Learning: Architectures, Applications and Issues. In Proceedings of the 2021 2nd Information Communication Technologies Conference (ICTC), Nanjing, China, 7–9 May 2021; pp. 302–307. [Google Scholar] [CrossRef]
- Li, C.; Yuan, Y.; Wang, F.Y. Blockchain-enabled Federated Learning: A Survey. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021; IEEE: New York, NY, USA, 2021; pp. 286–289. [Google Scholar]
- Issa, W.; Moustafa, N.; Turnbull, B.; Sohrabi, N.; Tari, Z. Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey. ACM Comput. Surv. 2022, 55, 1–43. [Google Scholar] [CrossRef]
- Liu, K.; Liang, X.; Kantola, R.; Hu, C. A survey on blockchain-enabled federated learning and its prospects with digital twin. Digit. Commun. Netw. 2022, 10, 248–264. [Google Scholar] [CrossRef]
- Zhu, J.; Cao, J.; Saxena, D.; Jiang, S.; Ferradi, H. Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions. ACM Comput. Surv. 2023, 55, 1–31. [Google Scholar] [CrossRef]
- Rani, S.; Kataria, A.; Kumar, S.; Tiwari, P. Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review. Know.-Based Syst. 2023, 274, 110658. [Google Scholar] [CrossRef]
- Ali, A.; Al-rimy, B.A.S.; Tin, T.T.; Altamimi, S.N.; Qasem, S.N.; Saeed, F. Empowering Precision Medicine: Unlocking Revolutionary Insights through Blockchain-Enabled Federated Learning and Electronic Medical Records. Sensors 2023, 23, 7476. [Google Scholar] [CrossRef]
- Zheng, W.; Yan, L.; Gou, C.; Wang, F.Y. Federated meta-learning for fraudulent credit card detection. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, New York, NY, USA, 7 January 2021; ACM: New York, NY, USA, 2021. [Google Scholar]
- Zeng, S.; Li, Z.; Yu, H.; Zhang, Z.; Luo, L.; Li, B.; Niyato, D. HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics in Industrial Metaverse. arXiv 2022, arXiv:2211.03300. [Google Scholar] [CrossRef]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education; Routledge: London, UK, 2018; pp. 668–685. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Jagarlamudi, G.K.; Yazdinejad, A.; Parizi, R.M.; Pouriyeh, S. Exploring privacy measurement in federated learning. J. Supercomput. 2023, 80, 10511–10551. [Google Scholar] [CrossRef]
- Musa, H.S.; Krichen, M.; Altun, A.A.; Ammi, M. Survey on Blockchain-Based Data Storage Security for Android Mobile Applications. Sensors 2023, 23, 8749. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.R.; Vinagre, J.; Gama, J. Towards federated learning: An overview of methods and applications. WIREs Data Min. Knowl. Discov. 2023, 13, e1486. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, J.; Zhang, Y.; Han, Z.; Ma, C. LAFED: A lightweight authentication mechanism for blockchain-enabled federated learning system. Future Gener. Comput. Syst. 2023, 145, 56–67. [Google Scholar] [CrossRef]
- Gourisetti, S.N.G.; Mylrea, M.; Patangia, H. Evaluation and Demonstration of Blockchain Applicability Framework. IEEE Trans. Eng. Manag. 2020, 67, 1142–1156. [Google Scholar] [CrossRef]
- Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. DeepChain: Auditable and Privacy-Preserving Deep Learning with Blockchain-Based Incentive. IEEE Trans. Dependable Secure Comput. 2021, 18, 2438–2455. [Google Scholar] [CrossRef]
- Feng, C.; Liu, B.; Yu, K.; Goudos, S.K.; Wan, S. Blockchain-Empowered Decentralized Horizontal Federated Learning for 5G-Enabled UAVs. IEEE Trans. Industr. Inform. 2022, 18, 3582–3592. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hong, C.S. Blockchain-based Node-aware Dynamic Weighting Methods for Improving Federated Learning Performance. In Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 18–20 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Y.; Xiong, H. A Blockchain-based Model Sharing and Calculation Method for Urban Rail Intelligent Driving Systems. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; ACM: New York, NY, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Rahmadika, S.; Rhee, K.H. Blockchain technology for providing an architecture model of decentralized personal health information. Int. J. Eng. Bus. Manag. 2018, 10, 1847979018790589. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, Q.; Li, Q.; Nie, L.; Shen, Z.; Choo, K.K.R.; Yu, K. A Redactable Blockchain Framework for Secure Federated Learning in Industrial Internet of Things. IEEE Internet Things J. 2022, 9, 17901–17911. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, G.; Chen, Z.; Guo, J.; Liu, P. A study of a federated learning framework based on the interstellar file system and blockchain: Private Blockchain Federated Learning. In Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022; IEEE: New York, NY, USA, 2022; pp. 267–273. [Google Scholar] [CrossRef]
- ur Rehman, M.H.; Salah, K.; Damiani, E.; Svetinovic, D. Towards Blockchain-Based Reputation-Aware Federated Learning. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; IEEE: New York, NY, USA, 2020; pp. 183–188. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, Z.; Sun, S.; Zhang, S.; Liu, Z.; Yu, H. FedCoin: A Peer-to-Peer Payment System for Federated Learning. In Federated Learning: Privacy and Incentive; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 125–138. [Google Scholar] [CrossRef]
- Ma, S.; Cao, Y.; Xiong, L. Transparent Contribution Evaluation for Secure Federated Learning on Blockchain. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW), Chania, Greece, 19–22 April 2021; IEEE: New York, NY, USA, 2021; pp. 88–91. [Google Scholar] [CrossRef]
- Liu, Z.; Mu, J.; Lv, W.; Jing, Z.; Zhou, Q.; Jing, X. A Distributed Attack-Resistant Trust Model for Automatic Modulation Classification. IEEE Commun. Lett. 2022, 27, 145–149. [Google Scholar] [CrossRef]
- Feng, T.; Jiao, Y.; Fang, J.; Tian, Y. Medical health data security model based on alliance blockchain. Comput. Sci. 2020, 47, 305–311. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained On-Device Federated Learning. IEEE Commun. Lett. 2020, 24, 1279–1283. [Google Scholar] [CrossRef]
- Ramanan, P.; Nakayama, K. BAFFLE: Aggregator Free Federated Learning. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; IEEE: New York, NY, USA, 2020; pp. 72–81. [Google Scholar] [CrossRef]
- Toyoda, K.; Zhao, J.; Zhang, A.N.S.; Mathiopoulos, P.T. Blockchain-Enabled Federated Learning With Mechanism Design. IEEE Access 2020, 8, 219744–219756. [Google Scholar] [CrossRef]
- Pokhrel, S.R.; Choi, J. Federated Learning with Blockchain for Autonomous Vehicles: Analysis and Design Challenges. IEEE Trans. Commun. 2020, 68, 4734–4746. [Google Scholar] [CrossRef]
- Mehta, P.; Gupta, R.; Tanwar, S. Blockchain envisioned UAV networks: Challenges, solutions, and comparisons. Comput. Commun. 2020, 151, 518–538. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, B.; Dong, A. Blockchain Empowered Federated Learning for Data Sharing Incentive Mechanism. Procedia Comput. Sci. 2022, 202, 348–353. [Google Scholar] [CrossRef]
- Firdaus, M.; Larasati, H.T.; Rhee, K.H. A Secure Federated Learning Framework using Blockchain and Differential Privacy. In Proceedings of the 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom), Xi’an, China, 25–27 June 2022; IEEE: New York, NY, USA, 2022; pp. 18–23. [Google Scholar] [CrossRef]
- Bandara, E.; Shetty, S.; Rahman, A.; Mukkamala, R.; Zhao, J.; Liang, X. Bassa-ML—A Blockchain and Model Card Integrated Federated Learning Provenance Platform. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; IEEE: New York, NY, USA, 2022; pp. 753–759. [Google Scholar] [CrossRef]
- Cheng, X.; Tian, W.; Shi, F.; Zhao, M.; Chen, S.; Wang, H. A Blockchain-Empowered Cluster-Based Federated Learning Model for Blade Icing Estimation on IoT-Enabled Wind Turbine. IEEE Trans. Industr. Inform. 2022, 18, 9184–9195. [Google Scholar] [CrossRef]
- Kong, Q.; Yin, F.; Xiao, Y.; Li, B.; Yang, X.; Cui, S. Achieving Blockchain-based Privacy-Preserving Location Proofs under Federated Learning. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhao, J.; Zhang, Y.; Wu, Y. FedBC: Blockchain-based Decentralized Federated Learning. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Beijing, China, 23–25 October 2020; IEEE: New York, NY, USA, 2020; pp. 217–221. [Google Scholar] [CrossRef]
- Qu, Y.; Gao, L.; Xiang, Y.; Shen, S.; Yu, S. FedTwin: Blockchain-Enabled Adaptive Asynchronous Federated Learning for Digital Twin Networks. IEEE Netw. 2022, 36, 183–190. [Google Scholar] [CrossRef]
- Shayan, M.; Fung, C.; Yoon, C.J.; Beschastnikh, I. Biscotti: A blockchain system for private and secure federated learning. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1513–1525. [Google Scholar] [CrossRef]
- Imran, B. Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained; PACKT Publishing: Birmingham, UK, 2018. [Google Scholar]
- Desai, H.B.; Ozdayi, M.S.; Kantarcioglu, M. BlockFLA:Accountable Federated Learning via Hybrid Blockchain Architecture. In Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, Virtual Event, USA, 26–28 April 2021; ACM: New York, NY, USA, 2021; pp. 101–112. [Google Scholar] [CrossRef]
- Bao, X.; Su, C.; Xiong, Y.; Huang, W.; Hu, Y. FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive. In Proceedings of the 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), Qingdao, China, 9–11 August 2019; IEEE: New York, NY, USA, 2019; pp. 151–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Liu, Y. SABlockFL: A blockchain-based smart agent system architecture and its application in federated learning. Int. J. Crowd Sci. 2020, 4, 133–147. [Google Scholar] [CrossRef]
- Fu, X.; Wang, H.; Shi, P. A survey of Blockchain consensus algorithms: Mechanism, design and applications. Sci. China Inf. Sci. 2021, 64, 1–15. [Google Scholar] [CrossRef]
- Chen, H.; Asif, S.A.; Park, J.; Shen, C.C.; Bennis, M. Robust blockchained federated learning with model validation and proof-of-stake inspired consensus. arXiv 2021, arXiv:2101.03300. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus. IEEE Netw. 2021, 35, 234–241. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. BEdgeHealth: A Decentralized Architecture for Edge-Based IoMT Networks Using Blockchain. IEEE Internet Things J. 2021, 8, 11743–11757. [Google Scholar] [CrossRef]
- Li, J.; Shao, Y.; Wei, K.; Ding, M.; Ma, C.; Shi, L.; Han, Z.; Poor, H.V. Blockchain Assisted Decentralized Federated Learning (BLADE-FL): Performance Analysis and Resource Allocation. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2401–2415. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, Y.; Guo, S.; Qiu, X.; Li, W.; Yu, P. BAFL: A Blockchain-Based Asynchronous Federated Learning Framework. IEEE Trans. Comput. 2022, 71, 1092–1103. [Google Scholar] [CrossRef]
- Korkmaz, C.; Kocas, H.E.; Uysal, A.; Masry, A.; Ozkasap, O.; Akgun, B. Chain FL: Decentralized Federated Machine Learning via Blockchain. In Proceedings of the 2020 Second International Conference on Blockchain Computing and Applications (BCCA), Antalya, Turkey, 2–5 November 2020; IEEE: New York, NY, USA, 2020; pp. 140–146. [Google Scholar] [CrossRef]
- Salah, K.; Rehman, M.H.U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and Open Research Challenges. IEEE Access 2019, 7, 10127–10149. [Google Scholar] [CrossRef]
- Cheng, R.; Sun, Y.; Liu, Y.; Xia, L.; Feng, D.; Imran, M.A. Blockchain-Empowered Federated Learning Approach for an Intelligent and Reliable D2D Caching Scheme. IEEE Internet Things J. 2022, 9, 7879–7890. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Y.; Sun, R.; Qian, X.; Zi, D.; Xie, Z.; Tong, E.; Niu, W.; Liu, J.; Han, Z. Blockchain-based decentralized federated learning: A secure and privacy-preserving system. In Proceedings of the 2021 IEEE 23rd International Conference on High Performance Computing & Communications; 7th International Conference on Data Science & Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, China, 20–22 December 2021; IEEE: New York, NY, USA, 2021; pp. 941–948. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Bai, Y.; Xu, P.; Gao, T.; Jiang, H.; Gao, W.; Li, X. Blockchain Enabled Intelligence of Federated Systems (BELIEFS): An attack-tolerant trustable distributed intelligence paradigm. Energy Rep. 2021, 7, 8900–8911. [Google Scholar] [CrossRef]
- Mehta, J.; Desai, R.; Mehta, J.; Gandhi, D.; D’Mello, L. Towards a Multi-Modular Decentralized System for Dealing with EHR Data. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; IEEE: New York, NY, USA, 2022; pp. 567–572. [Google Scholar]
- He, Y.; Huang, K.; Zhang, G.; Li, J.; Chen, J.; Leung, V.C.M. A Blockchain-Enabled Federated Learning System with Edge Computing for Vehicular Networks. In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Guo, H.; Mao, Y.; He, X.; Nie, H. A Blockchain-based Grouped Federated Learning Scheme Against Malicious Clients. In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Z.; Ben Abdallah, A. A Robust Multi-Stage Power Consumption Prediction Method in a Semi-Decentralized Network of Electric Vehicles. IEEE Access 2022, 10, 37082–37096. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Xie, Y. A Methodology for High-efficient Federated-learning with Consortium Blockchain. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 31 October–1 November 2020; IEEE: New York, NY, USA, 2020; pp. 3090–3095. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, Z.; Li, H.; Choo, K.K.R.; Deng, R.H. Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2848–2861. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Wang, X.; Ji, T.; Yu, L.; Li, P. AI at the Edge: Blockchain-Empowered Secure Multiparty Learning with Heterogeneous Models. IEEE Internet Things J. 2020, 7, 9600–9610. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, H.; Tian, H.; Xie, S.; Zhang, Y. Cooperative Federated Learning and Model Update Verification in Blockchain-Empowered Digital Twin Edge Networks. IEEE Internet Things J. 2022, 9, 11154–11167. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Z.; Gai, K.; Duan, Q.; Lin, J.; Wu, J.; Choo, K.K.R. BESIFL: Blockchain Empowered Secure and Incentive Federated Learning Paradigm in IoT. IEEE Internet Things J. 2021, 10, 6561–6573. [Google Scholar] [CrossRef]
- Ding, N.; Fang, Z.; Huang, J. Incentive Mechanism Design for Federated Learning with Multi-Dimensional Private Information. In Proceedings of the 2020 18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), Volos, Greece, 15–19 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Feng, S.; Niyato, D.; Wang, P.; Kim, D.I.; Liang, Y.C. Joint Service Pricing and Cooperative Relay Communication for Federated Learning. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14–17 July 2019; IEEE: New York, NY, USA, 2019; pp. 815–820. [Google Scholar] [CrossRef]
- Kang, J.; Xiong, Z.; Niyato, D.; Xie, S.; Zhang, J. Incentive Mechanism for Reliable Federated Learning: A Joint Optimization Approach to Combining Reputation and Contract Theory. IEEE Internet Things J. 2019, 6, 10700–10714. [Google Scholar] [CrossRef]
- Lim, W.Y.B.; Garg, S.; Xiong, Z.; Niyato, D.; Leung, C.; Miao, C.; Guizani, M. Dynamic Contract Design for Federated Learning in Smart Healthcare Applications. IEEE Internet Things J. 2021, 8, 16853–16862. [Google Scholar] [CrossRef]
- Weng, J.; Weng, J.; Huang, H.; Cai, C.; Wang, C. FedServing: A Federated Prediction Serving Framework Based on Incentive Mechanism. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; IEEE: New York, NY, USA, 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Peng, Z.; Xu, J.; Chu, X.; Gao, S.; Yao, Y.; Gu, R.; Tang, Y. VFChain: Enabling Verifiable and Auditable Federated Learning via Blockchain Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 173–186. [Google Scholar] [CrossRef]
- Kalapaaking, A.P.; Khalil, I.; Rahman, M.S.; Atiquzzaman, M.; Yi, X.; Almashor, M. Blockchain-based Federated Learning with Secure Aggregation in Trusted Execution Environment for Internet-of-Things. IEEE Trans. Industr. Inform. 2022, 19, 1703–1714. [Google Scholar] [CrossRef]
- Wang, N.; Yang, W.; Guan, Z.; Du, X.; Guizani, M. BPFL: A Blockchain Based Privacy-Preserving Federated Learning Scheme. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Salim, S.; Turnbull, B.; Moustafa, N. A Blockchain-Enabled Explainable Federated Learning for Securing Internet-of-Things-Based Social Media 3.0 Networks. IEEE Trans. Comput. Soc. Syst. 2021, 4681–4697. [Google Scholar] [CrossRef]
- Wan, Y.; Qu, Y.; Gao, L.; Xiang, Y. Privacy-preserving blockchain-enabled federated learning for B5G-Driven edge computing. Comput. Netw. 2022, 204, 108671. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, W.; Bai, X.; Jin, S.; Jiang, T. Blockchain Enabled Federated Slicing for 5G Networks with AI Accelerated Optimization. IEEE Netw. 2020, 34, 46–52. [Google Scholar] [CrossRef]
- Liu, S.; Shang, Y. Federated Learning with Anomaly Client Detection and Decentralized Parameter Aggregation. In Proceedings of the 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Baltimore, MD, USA, 27–30 June 2022; IEEE: New York, NY, USA, 2022; pp. 37–43. [Google Scholar] [CrossRef]
- Ma, C.; Li, J.; Shi, L.; Ding, M.; Wang, T.; Han, Z.; Poor, H.V. When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm. IEEE Comput. Intell. Mag. 2022, 17, 26–33. [Google Scholar] [CrossRef]
- Bai, S.; Yang, G.; Liu, G.; Dai, H.; Rong, C. NttpFL: Privacy-Preserving oriented No Trusted Third Party Federated Learning System based on Blockchain. IEEE Trans. Netw. Service Manag. 2022, 19, 3750–3763. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, H. Blockchain-based Federated Learning with Limited Resources. In Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022; IEEE: New York, NY, USA, 2022; pp. 449–452. [Google Scholar] [CrossRef]
- Cui, L.; Su, X.; Ming, Z.; Chen, Z.; Yang, S.; Zhou, Y.; Xiao, W. CREAT: Blockchain-Assisted Compression Algorithm of Federated Learning for Content Caching in Edge Computing. IEEE Internet Things J. 2022, 9, 14151–14161. [Google Scholar] [CrossRef]
- Liu, L.; Wu, C.; Xiao, J. Blockchain-Based platform for Distribution AI. EasyChair Prepr. 2019. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Low-Latency Federated Learning and Blockchain for Edge Association in Digital Twin Empowered 6G Networks. IEEE Trans. Ind. Inform. 2021, 17, 5098–5107. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, X.; Liu, J.; Zhang, Y.; Huang, K.; Liang, Y. Blockchain-Enabled Federated Learning Data Protection Aggregation Scheme With Differential Privacy and Homomorphic Encryption in IIoT. IEEE Trans. Industr. Inform. 2022, 18, 4049–4058. [Google Scholar] [CrossRef]
- Liao, H.; Wang, Z.; Zhou, Z.; Wang, Y.; Zhang, H.; Mumtaz, S.; Guizani, M. Blockchain and Semi-Distributed Learning-Based Secure and Low-Latency Computation Offloading in Space-Air-Ground-Integrated Power IoT. IEEE J. Sel. Top. Signal Process 2022, 16, 381–394. [Google Scholar] [CrossRef]
- Sharma, P.K.; Park, J.H.; Cho, K. Blockchain and federated learning-based distributed computing defence framework for sustainable society. Sustain. Cities Soc. 2020, 59, 102220. [Google Scholar] [CrossRef]
- Majeed, A.; Hwang, S.O. A Comprehensive Analysis of Privacy Protection Techniques Developed for COVID-19 Pandemic. IEEE Access 2021, 9, 164159–164187. [Google Scholar] [CrossRef]
- Połap, D.; Srivastava, G.; Jolfaei, A.; Parizi, R.M. Blockchain Technology and Neural Networks for the Internet of Medical Things. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; IEEE: New York, NY, USA, 2020; pp. 508–513. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S.; Islam, M.S.; Alrajeh, N.A.; Muhammad, G. Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach. IEEE Access 2020, 8, 205071–205087. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chen, H.; Jin, S.; Jiao, Q. A Digital Currency System with Transaction Amount Privacy Protection. In Proceedings of the 2021 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Virtual, AB, Canada, 25–28 October 2021; IEEE: New York, NY, USA, 2021; pp. 535–540. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Almalki, F.A.; Afghah, F.; Hawbani, A.; Shvetsov, A.V.; Lee, B.; Song, H. Drones’ Edge Intelligence Over Smart Environments in B5G: Blockchain and Federated Learning Synergy. IEEE Trans. Green. Commun. Netw. 2022, 6, 295–312. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Communication-Efficient Federated Learning and Permissioned Blockchain for Digital Twin Edge Networks. IEEE Internet Things J. 2021, 8, 2276–2288. [Google Scholar] [CrossRef]
- Qu, Y.; Gao, L.; Luan, T.H.; Xiang, Y.; Yu, S.; Li, B.; Zheng, G. Decentralized Privacy Using Blockchain-Enabled Federated Learning in Fog Computing. IEEE Internet Things J. 2020, 7, 5171–5183. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Zhang, N.; Benslimane, A. Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1055–1069. [Google Scholar] [CrossRef]
- Halim, S.M.; Khan, L.; Thuraisingham, B. Next-Location Prediction Using Federated Learning on a Blockchain. In Proceedings of the 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, 28–31 October 2020; IEEE: New York, NY, USA, 2020; pp. 244–250. [Google Scholar] [CrossRef]
- Meese, C.; Chen, H.; Asif, S.A.; Li, W.; Shen, C.C.; Nejad, M. BFRT: Blockchained Federated Learning for Real-time Traffic Flow Prediction. In Proceedings of the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina, Italy, 16–19 May 2022; IEEE: New York, NY, USA, 2022; pp. 317–326. [Google Scholar] [CrossRef]
- Tange, K.; De Donno, M.; Fafoutis, X.; Dragoni, N. A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing Opportunities. IEEE Commun. Surv. Tutor. 2020, 22, 2489–2520. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT. IEEE Trans. Industr. Inform. 2020, 16, 4177–4186. [Google Scholar] [CrossRef]
- Tseng, L.; Wong, L.; Otoum, S.; Aloqaily, M.; Othman, J.B. Blockchain for Managing Heterogeneous Internet of Things: A Perspective Architecture. IEEE Netw. 2020, 34, 16–23. [Google Scholar] [CrossRef]
- Rathee, G.; Sharma, A.; Iqbal, R.; Aloqaily, M.; Jaglan, N.; Kumar, R. A Blockchain Framework for Securing Connected and Autonomous Vehicles. Sensors 2019, 19, 3165. [Google Scholar] [CrossRef] [PubMed]
- Ai, B.; Cheng, X.; Kurner, T.; Zhong, Z.D.; Guan, K.; He, R.S.; Xiong, L.; Matolak, D.W.; Michelson, D.G.; Briso-Rodriguez, C. Challenges Toward Wireless Communications for High-Speed Railway. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2143–2158. [Google Scholar] [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Nitin Bhagoji, A.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [Google Scholar] [CrossRef]
- Zhu, S.; Li, R.; Cai, Z.; Kim, D.; Seo, D.; Li, W. Secure verifiable aggregation for blockchain-based federated averaging. High-Confid. Comput. 2022, 2, 100046. [Google Scholar] [CrossRef]
Blockchain | Federated Learning | References | |
---|---|---|---|
Category of architecture |
|
| [41,42] |
Key technology |
|
| [41,43] |
|
| ||
|
| ||
| |||
Technical nature |
|
| [37,44] |
Data storage |
|
| [45,46] |
Authentication mechanism |
|
| [47] |
Target of application |
|
| [42,48] |
Similarity |
| ||
| |||
|
Blockchain Technologies | Model | Solved Problem | Methods Described | Technical Characteristics | References |
---|---|---|---|---|---|
Smart Contract | BlockFLA FLChain SABlockFL |
|
| Shareability | [66] |
|
| Anonymity and Authenticity | [29] | ||
|
| Decentralized | [20] | ||
|
| Non-breach of contract | [63] | ||
|
| Non-tampering and non-breach of contract | [67] | ||
|
| Transparency and auditability | [68] | ||
Consensus Algorithm | DeepChain |
|
| Robustness | [21] |
|
| Decentralized | [69] | ||
| |||||
|
| Privacy and anonymity | [70] | ||
|
| Gradient inference attack audit | [71] | ||
| |||||
| Decentralized | [61] | |||
| Locally weighted | [51] | |||
Digital Signature | BlockFL BLADE-FL |
|
| Gradient encryption audit | [18] |
|
| Transmission encryption | [22] | ||
Hash Algorithm | BAFL |
|
| Defensive | [54] |
|
| Audit | [72] | ||
Peer-to-Peer Networking | ChainFL |
|
| Expandability | [73] |
Solution | Blockchain Technology | Application Scenario | Problem to Be Solved | Method | Reference |
---|---|---|---|---|---|
|
|
|
|
| [52] |
|
|
|
| [17] | |
|
|
|
|
| [20] |
|
|
|
| [55] | |
|
|
|
| [86] | |
|
|
| [87] | ||
|
|
| [88] | ||
|
|
|
|
| [89] |
|
|
|
| [90] | |
|
|
| [91] | ||
|
|
|
| [27] | |
|
|
|
| [18] | |
|
|
|
|
| [92] |
|
|
|
| [93] | |
|
|
| [94] | ||
|
|
|
|
| [62] |
|
|
|
| [95] | |
|
|
| [59] | ||
|
|
|
|
| [96] |
|
|
| [51] | ||
|
|
|
|
| [68] |
Application Direction | Goal | Method | Reference |
---|---|---|---|
IIoT |
|
| [22] |
| |||
| |||
|
| [116] | |
| |||
| |||
|
| [54] | |
| |||
Facility Internet of Things |
|
| [21] |
| |||
| |||
|
| [20] | |
| |||
Power Internet of Things |
|
| [117] |
| |||
| |||
Internet of Vehicles |
|
| [23,24] |
| |||
|
| [25] | |
| |||
|
| [26] | |
| |||
|
| [64] | |
| |||
Military systems |
|
| [118] |
Medical system |
|
| [119] |
|
| [27,28,29] [120,121] | |
| |||
|
| [30] | |
| |||
| |||
Digital currency system |
|
| [122] |
| |||
| |||
Beyond-5G applications |
|
| [123] |
| |||
| |||
Digital twin edge network |
|
| [124] |
| |||
| |||
Fog computing |
|
| [125] |
| |||
| |||
Unmanned Aerial Vehicle |
|
| [126] |
| |||
Prediction system |
|
| [127] |
| |||
Traffic flow prediction |
|
| [128] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, W.; Zhu, Y.; Song, C.; Li, H.; Zhu, L.; Xie, J.; Chen, T.; Xu, T.; Xu, X.; Gao, J. Blockchain-Based Federated Learning: A Survey and New Perspectives. Appl. Sci. 2024, 14, 9459. https://doi.org/10.3390/app14209459
Ning W, Zhu Y, Song C, Li H, Zhu L, Xie J, Chen T, Xu T, Xu X, Gao J. Blockchain-Based Federated Learning: A Survey and New Perspectives. Applied Sciences. 2024; 14(20):9459. https://doi.org/10.3390/app14209459
Chicago/Turabian StyleNing, Weiguang, Yingjuan Zhu, Caixia Song, Hongxia Li, Lihui Zhu, Jinbao Xie, Tianyu Chen, Tong Xu, Xi Xu, and Jiwei Gao. 2024. "Blockchain-Based Federated Learning: A Survey and New Perspectives" Applied Sciences 14, no. 20: 9459. https://doi.org/10.3390/app14209459
APA StyleNing, W., Zhu, Y., Song, C., Li, H., Zhu, L., Xie, J., Chen, T., Xu, T., Xu, X., & Gao, J. (2024). Blockchain-Based Federated Learning: A Survey and New Perspectives. Applied Sciences, 14(20), 9459. https://doi.org/10.3390/app14209459