Strategies for Reducing Automobile Fuel Consumption
Abstract
:1. Introduction
1.1. Fuel Economy vs. Fuel Consumption
1.2. Energy Balance of a Vehicle
1.3. Generalities about Fuel Consumption and Road Vehicle Operation
2. Factors Affecting Fuel Consumption
3. Vehicle Design and Technology
- v: Vehicle speed.
- a: Vehicle acceleration.
- ε: Mass factor that considers the conversion of the inertia of rotating masses to translational mass
- g: Gravity.
- grade: Road grade (road inclination).
- CR: Coefficient of rolling resistance.
- ρ: Air density.
- CD: Coefficient of aerodynamic resistance.
- A: Frontal area.
- m: Vehicle mass.
3.1. Advances in Internal Combustion Engines (ICEs)
3.2. Advances in Alternatives to Petroleum-Based Fuels
3.3. Other Technologies Related to Fuel Economy
3.4. Control Signals Transmission
3.5. Improved Fuel Economy of Vehicles by Reducing Friction Losses
3.6. Improved Fuel Economy by Reducing Rolling Resistance (Tire Technology)
3.7. Improved Fuel Economy by Improving Thermal Management in Automobiles
4. Utilization-Related Factors
4.1. Considerations on the Influence of Driving Modes on Energy Consumption
4.2. Promotion of Traffic Flow Improvement
5. Transportation Policies, Alternatives, and Externalities
5.1. Transportation Planning and Policy-Related Factors
5.2. Fuel Consumption Standards and Their Effects
5.3. Repowering and Reconditioning Vehicles as an Alternative to Their Scrapping and Recycling
5.4. Alternatives to Motorized Road Transportation
5.5. Electric Mobility
5.6. Complementary Factors
6. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Energy Information Administration. International Energy Outlook 2019 with Projections to 2050; U.S. Energy Information Administration: Washington, DC, USA, 2019. [Google Scholar]
- U.S. Energy Information Administration. Global Transportation Energy Consumption: Examination of Scenarios to 2040 Using ITEDD; U.S. Energy Information Administration: Washington, DC, USA, 2017. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy 2025–2035; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Romero, C. Dinámica de Tracción del Automóvil; Universidad Tecnológica de Pereira, Facultad de Tecnología: Pereira, Colombie, 1995. [Google Scholar]
- Jacobson, B. Vehicle Dynamics Compendium for Course MMF062; Chalmers University of Technology: Gothenburg, Sweden, 2019. [Google Scholar]
- Wang, W.G.; Palmer, G.M.; Bata, R.M.; Clark, N.N.; Gautam, M.; Lyons, D.W. Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer. SAE Trans. 1992, 101, 687–696, SAE paper 922435. [Google Scholar]
- Jerrelind, J.; Allen, P.; Gruber, P.; Berg, M.; Drugge, L. Contributions of vehicle dynamics to the energy efficient operation of road and rail vehicles. Veh. Syst. Dyn. 2021, 59, 1114–1147. [Google Scholar] [CrossRef]
- Meseguer, J.E.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Assessing the impact of driving behavior on instantaneous fuel consumption. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 443–448. [Google Scholar] [CrossRef]
- Preda, I.; Covaciu, D.; Ciolan, G. Coast Down Test—Theoretical and Experimental Approach. In CONAT; Transilvania University Press: Brasov, Romania, 2010; pp. 155–162. [Google Scholar]
- QSS-Toolbox. Available online: http://www.idsc.ethz.ch/Downloads/qss/qss.zip (accessed on 10 October 2023).
- Alemdar, K.D.; Çodur, M.K.; Codur, M.Y.; Uysal, F. Environmental Effects of Driver Distraction at Traffic Lights: Mobile Phone Use. Sustainability 2023, 15, 15056. [Google Scholar] [CrossRef]
- Du, Y.; Wu, J.; Yang, S.; Zhou, L. Predicting vehicle fuel consumption patterns using floating vehicle data. J. Environ. Sci. 2017, 59, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Jin, H.; Wang, W. A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing. Transp. Res. Part D Transp. Environ. 2016, 49, 203–218. [Google Scholar] [CrossRef]
- Zhao, D.; Li, H.; Hou, J.; Gong, P.; Zhong, Y.; He, W.; Fu, Z. A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption. Energies 2023, 16, 5258. [Google Scholar] [CrossRef]
- Pathak, S.K.; Sood, V.; Singh, Y.; Channiwala, S.A. Real world vehicle emissions: Their correlation with driving parameters. Transp. Res. Part D Transp. Environ. 2016, 44, 157–176. [Google Scholar] [CrossRef]
- Moawad, A.; Kim, N.; Shidore, N.; Rousseau, A. Assessment of Vehicle Sizing, Energy Consumption, and Cost through Large-Scale Simulation of Advanced Vehicle Technologies; Argone National Laboratory: Chicago, IL, USA, 2016. [Google Scholar]
- Delorme, A.; Karbowski, D.; Vijayagopal, R.; Sharer, P. Evaluation of Fuel Consumption Potential of Medium and Heavy Duty-Vehicles through Modeling and Simulation; Report to National Academy of Sciences; Argonne National Lab.: Argonne, IL, USA, 2009. [Google Scholar]
- Dahham, R.Y.; Wei, H.; Pan, J. Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges. Energies 2022, 15, 6222. [Google Scholar] [CrossRef]
- Johnson, T.; Joshi, A. Review of Vehicle Engine Efficiency and Emissions. SAE Int. J. Engines 2018, 11, 1307–1330. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. The outlook for fuels for internal combustion engines. Int. J. Engine Res. 2014, 15, 383–398. [Google Scholar] [CrossRef]
- Lee, B.; Oh, H.; Han, S.; Woo, S.; Son, J. Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%; SAE International: Warrendale, PA, USA, 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Lešnik, L.; Kegl, B.; Torres-Jiménez, E.; Cruz-Peragón, F. Why we should invest further in the development of internal combustion engines for road applications. Oil Gas Sci. Technol. 2020, 75, 14. [Google Scholar] [CrossRef]
- Koeberlein, D. Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks. Cummins SuperTruck Program. 2014. Available online: https://www.energy.gov/eere/vehicles/articles/cummins-supertruck-program-technology-and-system-level-demonstration-1 (accessed on 5 October 2023).
- Korobitsyn, M.A. New and Advanced Conversion Technologies: Analysis of Cogeneration, Combined and Integrated Cycles. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 1998. [Google Scholar]
- U.S. DRIVE Partnership. Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability. Advanced Combustion and Emission Control Roadmap. 2018. Available online: https://www.energy.gov/eere/vehicles/us-drive (accessed on 29 September 2023).
- Paanu, T.; Niemi, S.; Rantanen, P. Waste Heat Recovery–Bottoming Cycle Alternatives. Proceedings of the University of Vaasa. 2012. Available online: https://osuva.uwasa.fi/bitstream/handle/10024/7796/isbn_978-952-476-389-9.pdf?sequence=1 (accessed on 28 September 2023).
- Turner, J.W.G.; Popplewell, A.; Patel, R.; Johnson, T.R.; Darnton, N.J.; Richardson, S.; Bredda, S.W.; Tudor, R.J.; Bithell, C.I.; Jackson, R.; et al. Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing. SAE Int. J. Engines 2014, 7, 387–417. [Google Scholar] [CrossRef]
- Bishop, J.; Nedungadi, A.; Ostrowski, G.; Surampudi, B.; Armiroli, P.; Taspinar, E. An Engine Start/Stop System for Improved Fuel Economy; SAE International: Warrendale, PA, USA, 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, S.; Dong, G.; Li, L. Transient Characteristics of Emissions during Engine Start/Stop Operation Employing a Conventional Gasoline Engine for HEV Application. Int. J. Automot. Technol. 2008, 9, 543–549. [Google Scholar] [CrossRef]
- Sciarretta, A.; Vahidi, A. Energy-Efficient Driving of Road Vehicles; Springer: Warszawa, Poland, 2020; ISBN 978-3-030-24126-1. [Google Scholar]
- Austin, T.; Carlson, T.R.; Lyons, J.M. The Benefits of Reducing Fuel Consumption and Greenhouse Gas Emissions from Light-Duty Vehicles. SAE Int. J. Engines 2009, 1, 480–490. [Google Scholar] [CrossRef]
- Brooker, A.D.; Ward, J.; Wang, L. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses; SAE International: Warrendale, PA, USA, 2013; Volume 2, pp. 1–10. [Google Scholar] [CrossRef]
- Meresht, N.B.; Moghadasi, S.; Sandeep, M.; ShahbakMunshi, M.; McTaggart-Cowan, G. Advances in Vehicle and Powertrain Efficiency of Long-Haul Commercial Vehicles: A Review. Energies 2023, 16, 6809. [Google Scholar] [CrossRef]
- Bedar, P.; Chitragar, P.R.; Shivaprasad, K.V.; Kumar, G.N. Performance and emission analysis of a single cylinder CI engine using Simarouba glauca biodiesel. Lect. Notes Mech. Eng. 2017, 1519–1527. [Google Scholar] [CrossRef]
- Vadivelu, T.; Ramanujam, L.; Ravi, R.; Vijayalakshmi, S.K.; Ezhilchandran, M. An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen. Energies 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Nakata, K.; Nogawa, S.; Takahashi, D.; Yoshihara, Y.; Kumagai, A.; Suzuki, T. Engine Technologies for Achieving 45% Thermal Efficiency of S.I. Engine. SAE Int. J. Engines 2015, 9, 179–192. [Google Scholar] [CrossRef]
- Shivaprasad, K.V.; Chitragar, P.R.; Kumar, G.N. Experimental Investigation of Variations in Spark Timing using a Spark-Ignition Engine with Hydrogen-Blended Gasoline. Energy Technol. 2015, 3, 1174–1182. [Google Scholar] [CrossRef]
- Shivaprasad, K.V.; Chitragar, P.R.; Kumar, G.N. Effect of hydrogen addition on combustion and emissions performance of a high speed spark ignited engine at idle condition. Therm. Sci. 2018, 22, 1405–1413. [Google Scholar] [CrossRef]
- Duan, H.; Jia, M.; Xu, Z.; Li, Y.; Xia, G. Comprehensive analysis of combustion behaviors of hydrogen (H2)/diesel reactivity-controlled compression ignition (RCCI) in a light-duty diesel engine. Fuel 2023, 353, 129237. [Google Scholar] [CrossRef]
- Öztürk, E.; Can, Ö. Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend. Energy 2022, 244, 123129. [Google Scholar] [CrossRef]
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.K.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef]
- Optimization of the Combustion Engine Reduces CO2 Emissions by Up to Six Percent; Stuttgart, Germany, 2017. Available online: https://newsroom.mahle.com/press/en/press-releases/optimization-of-the-combustion-engine-reduces-co2-emissions-by-up-to-six-percent-55040# (accessed on 5 October 2023).
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Tung, S.C.; McMillan, M.L. Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 2004, 37, 517–536. [Google Scholar] [CrossRef]
- Zammit, J.-P. Managing Engine Thermal State to Reduce Friction Losses during Warm-Up. Ph.D. Thesis, The University of Nottingham, Nottingham, UK, 2012. [Google Scholar]
- Shayler, P.J.; Baylis, W.S.; Murphy, M. Main bearing friction and thermal interaction during the early seconds of cold engine operation. J. Eng. Gas Turbines Power 2002, 127, 197–205. [Google Scholar] [CrossRef]
- Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the friction losses of different engine concepts. Part 2: Sub-assembly resolved friction loss comparison of three engines. Lubricants 2019, 7, 105. [Google Scholar] [CrossRef]
- Fenske, G.R.; Erck, R.A.; Ajayi, O.O.; Masoner, A.; Comfort, A. Impact of Friction Reduction Technologies on Fuel Economy for Ground Vehicles. In Proceedings of the NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), Troy, MI, USA, 17–22 August 2009; 2009; pp. 1–10. [Google Scholar]
- Joachim, F.J.; Börner, J.; Kurz, N. How to Minimize Power Losses in Transmissions, Axles, and Steering Systems. Gear Technol. 2012, 29, 58–66. [Google Scholar] [CrossRef]
- Aldhufairi, H.S.; Olatunbosun, O.A. Developments in tyre design for lower rolling resistance: A state of the art review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 232, 1865–1882. [Google Scholar] [CrossRef]
- Demarco, K.; Stratton, J.; Chinavare, K.; Vanhouten, G. The Effects of Mass and Wheel Aerodynamics on Vehicle Fuel Economy; SAE International: Warrendale, PA, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Regulation (EU) 2020/740 on the labelling of tyres with respect to fuel efficiency and other parameters, amending Regulation (EU) 2017/1369 and repealing Regulation (EC) No 1222/2009. 2020. Available online: https://eur-lex.europa.eu/eli/reg/2020/740/oj (accessed on 16 October 2023).
- Hall, D.E.; Moreland, J.C. Fundamentals of rolling resistance. Rubber Chem. Technol. 2001, 74, 525–539. [Google Scholar] [CrossRef]
- Evans, L.; MacIssac, J. National Highway Traffic Safety Administration (HTSA). Tire Fuel Efficiency Consumer Information Program Developmen: Phase 1—Evaluation of Laboratory Test Protocols. U.S. Department of Transportation. 2009. Available online: https://www.federalregister.gov/documents/2010/03/30/2010-6907/tire-fuel-efficiency-consumer-information-program (accessed on 25 September 2023).
- Yokohama. Care and Safety: Rolling Resistance. Available online: https://www.y-yokohama.com/global/product/tire/learn/care_safety/rolling_resistance/ (accessed on 28 October 2023).
- SAE J1269_202012 Technical Standard; Rolling Resistance Measurement Procedure for Passenger Car, Light Truck, and Highway Truck and Bus Tires. SAE International: Warrendale, PA, USA, 2020.
- Osborne, S.; Kopinsky, J.; Norton, S.; Sutherland, A.; Lancaster, D.; Nielsen, E.; Isenstadt, A.; German, J. Automotive Thermal Management Technology. Int. Counc. Clean Transp. 2016, 1–16. [Google Scholar]
- Jeffers, M.A.; Chaney, L.; Rugh, J.P. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather. SAE Int. J. 2015, 9, 75–82. [Google Scholar] [CrossRef]
- Farrington, R.B.; Rugh, J.P.; Barber, G.D. Effect of Solar-Reflective Glazing on Fuel Economy, Tailpipe Emissions, and Thermal Comfort; SAE International: Warrendale, PA, USA, 2000; pp. 1–7. [Google Scholar] [CrossRef]
- Marshall, G.J.; Mahony, C.P.; Rhodes, M.J.; Daniewicz, S.R.; Tsolas, N.; Thompson, S.M. Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering 2019, 5, 954–969. [Google Scholar] [CrossRef]
- Berry, I.M. The Effects of Driving Style and Vehicle Performance on the Real-World Fuel Consumption of US Light-Duty Vehicles. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Fontaras, G.; Zacharof, N.G.; Ciuffo, B. Fuel consumption and CO2 emissions from passenger cars in Europe–Laboratory versus real-world emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- David, W.; North, R. An Evaluation of the Estimated Impacts on Vehicle Emissions of a 20 mph Speed Restriction in Central London; Transport and Environmental Analysis Group. Imperial College London: London, UK, 2013. [Google Scholar]
- Huertas, J.I.; Díaz, J.; Giraldo, M.; Cordero, D.; Tabares, L.M. Eco-driving by replicating best driving practices. Int. J. Sustain. Transp. 2017, 12, 107–116. [Google Scholar] [CrossRef]
- Rimpas, D.; Papadakis, A.; Samarakou, M. OBD-II sensor diagnostics for monitoring vehicle operation and consumption. Energy Rep. 2020, 6, 55–63. [Google Scholar] [CrossRef]
- Siddiki, S.; Carley, S.; Zirogiannis, N.; Duncan, D.; Graham, J. Does dynamic federalism yield compatible policies? A study of the designs of federal and state vehicle policies. Policy Des. Pract. 2018, 1, 215–232. [Google Scholar] [CrossRef]
- U.S. Department of Transportation. Assessing the Full Costs of Congestion on Surface Transportation Systems and Reducing Them through Pricing; Office of Economic and Strategic Analysis: Washington, DC, USA, 2009. [Google Scholar]
- White Paper on Land, Infrastructure, Transport and Tourism in Japan, 2019; Ministry of Land, Infrastructure, Transport, and Tourism: Tokyo, Japan, 2019.
- Schoettle, B.; Sivak, M.; Tunnell, M. Report No. SWT-2016-12. A Survey of Fuel Economy and Fuel Usage by Heavy-Duty Truck Fleets. University of Michigan. American Transportation Research Institute. 2016. Available online: https://truckingresearch.org/wp-content/uploads/2016/10/2016.ATRI-UMTRI.FuelEconomyReport.Final_.pdf (accessed on 21 September 2023).
- Ramachandran, K.; Kanchustambham, S.; Wingerden, V.; Ladipo, O.; Aggarwal, S.; Rucker, A. Road Transport: Unlocking fuel-Saving Technologies in Trucking and Fleets; Carbon War Room: London, UK, 2012. [Google Scholar]
- Guía para la Gestión del Combustible en las Flotas de Transporte por Carretera; Instituto para la Diversificación y Ahorro de la Energía (IDAE): Madrid, Spain, 2006.
- Ley 697 de 2001. Mediante la Cual se Fomenta el uso Racional y Eficiente de la Energía, se Promueve la Utilización de Energías Alternativas y se Dictan Otras Disposiciones; Departamento Administrativo de la Función Pública, 2001. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=4449 (accessed on 1 November 2023).
- Ley 1964 de 2019. Por Medio de la Cual se Promueve el uso de Vehículos Eléctricos en Colombia y se Dictan Otras Disposiciones; Ministerio de Minas y Energía República de Colombia: Bogotá, Colombia, 2019.
- Plan de Acción Indicativo de Eficiencia Energética 2017–2022. Una Realidad y Oportunidad para Colombia; Ministerio de Minas y Energía: Bogotá, Colombia, 2016.
- Martínez, H.; Castellanos, S. Etiqueta y Norma de Eficiencia para Vehículos Livianos: Beneficios, Barreras y Estudios de caso: Una Herramienta para su Implementación en Países Latinoamericanos; Inter-American Development Bank: Washington, DC, USA, 2019; ISBN 1569739420. [Google Scholar]
- La Necesidad de un Etiquetado de Rendimiento y Emisiones Contaminantes en Vehículos Nuevos. Available online: https://elpoderdelconsumidor.org/wp-content/upload (accessed on 1 April 2019).
- Giampieri, A.; Ling-Chin, J.; Ma, Z.; Smallbone, A.; Roskilly, A.P. A review of the current automotive manufacturing practice from an energy perspective. Appl. Energy 2020, 261, 114074. [Google Scholar] [CrossRef]
- Vaz, C.R.; Rauen, T.R.S.; Lezana, Á.G.R. Sustainability and innovation in the automotive sector: A structured content analysis. Sustainability 2017, 9, 880. [Google Scholar] [CrossRef]
- Wallis, J.; Ferrone, C.W. A Review of Remanufactured Engine Technology for the Fleet Operator; SAE International: Warrendale, PA, USA, 1994; pp. 51–56. [Google Scholar] [CrossRef]
- Hung, A.; Tsang, M.; Ha, K.; Cheung, C.S.; Hung, W.T. Hong Kong Experience in Retrofitting In-Use Diesel Vehicles; SAE International: Warrendale, PA, USA, 2003; p. 1. [Google Scholar] [CrossRef]
- Liu, B.; Chen, D.; Zhou, W.; Nasr, N.; Wang, T.; Hu, S.; Zhu, B. The effect of remanufacturing and direct reuse on resource productivity of China’s automotive production. J. Clean. Prod. 2018, 194, 309–317. [Google Scholar] [CrossRef]
- Orecchini, F.; Santiangeli, A.; Zuccari, F. Real drive well-to-wheel energy analysis of conventional and electrified car powertrains. Energies 2020, 13, 4788. [Google Scholar] [CrossRef]
- Melfi, M.J.; Umans, S.D.; Atem, J.E. Viability of highly efficient multi-horsepower line-start permanent-magnet motors. IEEE Trans. Ind. Appl. 2015, 51, 120–128. [Google Scholar] [CrossRef]
- Pellegrino, G.; Vagati, A.; Boazzo, B.; Guglielmi, P. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Trans. Ind. Appl. 2012, 48, 2322–2332. [Google Scholar] [CrossRef]
- Ning, Z.; Li, G.; Melvin, D.L.R.; Chen, Y.; Bu, J.; Spencer-Jolly, D.; Liu, J.; Hu, B.; Gao, X.; Perera, J.; et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 2023, 618, 287–293. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Z.; Zhang, W.; He, X.; Wang, C. Interface design for all-solid-state lithium batteries. Nature 2023, 623, 4–10. [Google Scholar] [CrossRef]
- Pozzato, G.; Allam, A.; Pulvirenti, L.; Negoita, G.A.; Paxton, W.A.; Onori, S. Analysis and key findings from real-world electric vehicle field data. Joule 2023, 7, 2035–2053. [Google Scholar] [CrossRef]
- Marchesoni, M. Energy Efficiency in Electric Motors, Drives, Power Converters and Related Systems; MDPI: Basel, Switzerland, 2020; ISBN 9783039363902. [Google Scholar]
- Litman, T. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning; Victoria Transport Policy Institute: Victoria, BC, Canada, 2023. [Google Scholar]
- Caracterización Energética del Sector Transporte Carretero en Colombia; Informe Final; Econometría S.A.: Bogotá, Colombia, 2010.
- Informe Económico. Evolución y Perspectivas 2020–2021 del Mercado de Combustibles Líquidos en Colombia; Asociación Colombiana de Petróleo: Bogotá, Colombia, 2021. [Google Scholar]
Energy Distribution | Description | Percentage |
---|---|---|
Fuel Energy Propelling Wheels | In urban driving cycle | 12% |
Mechanical Losses (predominantly friction) | In urban driving cycle | 15% |
Fuel Consumption Reduction | From reducing mechanical losses | 1.5% per 10% reduction in mechanical losses |
Frictional Losses in Engine | Proportion of engine’s energy consumption | 48% |
Acceleration Resistance | Proportion of engine’s energy consumption | 35% |
Cruise Resistance | Proportion of engine’s energy consumption | 17% |
Piston Ring/Cylinder Assembly and Bearings Friction | Proportion of total frictional losses | 66% |
Valvetrain, Crankshaft, Transmission, Gear Friction | Proportion of total frictional losses | 34% |
Valvetrain Friction | Proportion of mechanical losses | Averages around 10%, up to 20–25% at lower engine speeds |
Aspect of Rolling Resistance | Description | Percentage Contribution | Source |
---|---|---|---|
Hysteresis | Compression, deformation, heating of tire’s contact area | ≈90% of rolling resistance | [51] |
Tire Rolling Resistance | Proportion of fuel used to overcome rolling resistance | 20–30% of fuel consumption | [51] |
Hysteresis Damping | Major contributor to rolling resistance | 80–95% of total tire rolling resistance | [52] |
Aerodynamic Resistance | Resistance due to tire rotation through air | 0–15% of total tire rolling resistance | [52] |
Frictional Sliding Contact | Friction between tire and rim, road surface | ≈5% of total tire rolling resistance | [52] |
Tire Labeling System | Fuel consumption efficiency categories (A to G) | Up to 7.5% difference in fuel consumption between A and G categories | [53] |
Tire Pressure Impact | Effect on fuel consumption | 2% increase in fuel consumption per 10% underinflation | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, C.A.; Correa, P.; Ariza Echeverri, E.A.; Vergara, D. Strategies for Reducing Automobile Fuel Consumption. Appl. Sci. 2024, 14, 910. https://doi.org/10.3390/app14020910
Romero CA, Correa P, Ariza Echeverri EA, Vergara D. Strategies for Reducing Automobile Fuel Consumption. Applied Sciences. 2024; 14(2):910. https://doi.org/10.3390/app14020910
Chicago/Turabian StyleRomero, Carlos Alberto, Pablo Correa, Edwan Anderson Ariza Echeverri, and Diego Vergara. 2024. "Strategies for Reducing Automobile Fuel Consumption" Applied Sciences 14, no. 2: 910. https://doi.org/10.3390/app14020910