Combination of Artificial Neural Networks and Principal Component Analysis for the Simultaneous Quantification of Dyes in Multi-Component Aqueous Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. PCA Model
2.3. ANN Model
3. Results and Discussions
3.1. Spectrophotometry Data Acquisition
3.2. Principal Component Analysis (PCA)
3.3. Artificial Neural Networks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lalnunhlimi, S.; Krishnaswamy, V. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian J. Microbiol. 2016, 47, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Leulescu, M.; Rotaru, A.; Pălărie, I.; Moanţă, A.; Cioateră, N.; Popescu, M.; Morîntale, E.; Viorica, B.M.; Rotaru, P. Tartrazine: Physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye. J. Therm. Anal. Calorim. 2018, 134, 209–231. [Google Scholar] [CrossRef]
- Abdellaouia, K.; Pavlovica, I.; Bouhentb, M.; Benhamouc, A.; Barriga, C. A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Appl. Clay Sci. 2017, 143, 142–150. [Google Scholar] [CrossRef]
- Motahare; Ghadamali, B.; Mansour, A.C.; Nasser, G. Removal of Brilliant Green and Crystal violet from Mono- and Bi-component Aqueous Solutions Using NaOH-modified Walnut Shell. Anal. Bioanal. Chem. Res. 2018, 5, 95–114. [Google Scholar] [CrossRef]
- Mirbolookia, H.; Amirnezhadb, R.; Pendashtehc, A.R. Treatment of high saline textile wastewater by activated sludge microorganisms. J. Appl. Res. Technol. 2017, 15, 167–172. [Google Scholar] [CrossRef]
- Al-Shabib, N.A.; Khan, J.M.; Malik, A.; Rehman, M.T.; AlAjmi, M.F.; Husain, F.M.; Husain, A.; Sen, P. Investigating the effect of food additive dye “tartrazine” on BLG fibrillation under in-vitro condition. A Biophys. Mol. Docking Study. J. King Saud Univ. -Sci. 2020, 32, 2034–2040. [Google Scholar] [CrossRef]
- Campos-Pereira, F.D.; Veiga-Menoncello, A.C.P.; Marin-Morales, M.A. DNA Damage Induced by Diet, de Toxic Effects of Chemicals in Food, Chemical and Consumer Product Safety; Research Signpost: São Paulo, Brazil, 2014; pp. 43–59. [Google Scholar] [CrossRef]
- Tiron, M.M.; Lucaciu, I.E.; Nita-Lazar, M.; Gheorghe, S. Considerations on the Toxicity of Brilliant Blue FCF Aqueous Solutions before and after Ozonation. Rev. Chim. 2020, 71, 356–365. [Google Scholar] [CrossRef]
- Botelho, G.; Dantas, K.C.F.; Sena, M.M. Determination of allura red dye in hard candies by using digital images obtained with a mobile phone and N-PLS. Chemom. Intell. Lab. Syst. 2017, 167, 44–49. [Google Scholar] [CrossRef]
- Basu; Suresh, K.G. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme. J. Phys. Chem. B 2017, 126, 1222–1239. [Google Scholar] [CrossRef]
- Zeynep, F.; Oymak, T.; Emrah, D. Determination of synthetic colorants in cosmetic products by reversed-phase high-performance liquid chromatography coupled with diode-array detector. J. Res. Pharm. 2019, 23, 1048–1059. [Google Scholar] [CrossRef]
- Hasan, M.A.; Hashim, S.T.; Abid, S.E.; Bajlan, J.S. Determination of the Concentration of Food Azo Dyes by High Performance Liquid Chromatography (HPLC). Curr. Res. Microbiol. Biotechnol. 2016, 6, 1460–1465. [Google Scholar]
- Nowak, P.M. Simultaneous quantification of food colorants and preservatives in sports drinks by the high performance liquid chromatography and capillary electrophoresis methods evaluated using the red-green-blue model. J. Chromatogr. A 2020, 1620, 460976. [Google Scholar] [CrossRef] [PubMed]
- Yamjala, K.; Nainar, M.S.; Ramisetti, N.R. Methods for the analysis of azo dyes employed in food industry—A review. Food Chem. 2016, 192, 813–824. [Google Scholar] [CrossRef]
- Otero, P.; Saha, S.K.; Hussein, A.; Barron, J.; Murray, P. Simultaneous Determination of 23 Azo Dyes in Paprika by Gas Chromatography-Mass Spectrometry. Food Anal. Methods 2017, 10, 876–884. [Google Scholar] [CrossRef]
- Rejczak, T.; Tuzimski, T. Application of High-Performance Liquid Chromatography with Diode Array Detector for Simultaneous Determination of 11 Synthetic Dyes in Selected Beverages and Foodstuffs. Food Anal. Methods 2017, 10, 3572–3588. [Google Scholar] [CrossRef]
- Nateri; Ekrami, E. Quantitative analysis of bicomponent dye solutions by derivative spectrophotometry. Pigment Resin Technol. 2009, 38, 43–48. [Google Scholar] [CrossRef]
- Jadhav, J.; Srivastava, V.C. Simultaneous spectrophotometric estimation of nitrobenzene, aniline, and phenol in a ternary mixture using genetic algorithm. J. Indian Chem. Soc. 2023, 100, 100814. [Google Scholar] [CrossRef]
- Mostafa; Shaaban, A.H. Chemometric Assisted UV-Spectrophotometric Methods Using Multivariate Curve Resolution Alternating Least Squares and Partial Least Squares Regression for Determination of Beta-Antagonists in Formulated Products: Evaluation of the Ecological Impact. Molecules 2023, 28, 328. [Google Scholar] [CrossRef]
- Alsamarrai, K.F.; Ameen, S.T. Simultaneous Ratio Derivative Spectrophotometric Determination of Paracetamol, Caffeine and Ibuprofen in Their Ternary Form. Baghdad Sci. J. 2022, 19, 1276. [Google Scholar] [CrossRef]
- Rodrigues, J.M.F.; Cardoso, P.J.S.; Chinnici, M. Artificial Intelligence Applications and Innovations: Day-to-Day Life Impact. Appl. Sci. 2023, 23, 12742. [Google Scholar] [CrossRef]
- Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953–960. [Google Scholar] [CrossRef]
- Moreira, M.O.; Kaizer, B.M.; Ohishi, T.; Bonatto, B.D.; Souza, A.C.Z.D.; Balestrassi, P.P. Multivariate Strategy Using Artificial Neural Networks for Seasonal Photovoltaic Generation Forecasting. Energies 2023, 16, 369. [Google Scholar] [CrossRef]
- Świetlicka; Kuniszyk-Jóźkowiak, W.; Świetlicki, M. Artificial Neural Networks Combined with the Principal Component Analysis for Non-Fluent Speech Recognition. Sensors 2022, 22, 321. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Lira, G.Y.; Hernandez, P.; Álvarez-Romero, G.A.; Gutiérrez, J.M. Simultaneous Quantification of Four Principal NSAIDs through Voltammetry and Artificial Neural Networks Using a Modified Carbon Paste Electrode in Pharmaceutical Samples. Chem. Proc. 2021, 5, 3. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, Y. A Hybrid Model Utilizing Principal Component Analysis and Artificial Neural Networks for Driving Drowsiness Detection. Appl. Sci. 2022, 12, 6007. [Google Scholar] [CrossRef]
- Howley, T.; Madden, M.; O’Connell, M.-L.; Ryder, A. The Effect of Principal Component Analysis on Machine Learning Accuracy with High Dimensional Spectral Data. In Proceedings of the AI-2005, 25th International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, 12–14 December 2005; pp. 209–222. [Google Scholar] [CrossRef]
- Salem, N.; Hussein, S. Data dimensional reduction and principal components analysis. Procedia Comput. Sci. 2019, 163, 292–299. [Google Scholar] [CrossRef]
- Mehdi; Brahmi-Ingrachen, D.; Belkacemi, H.; Muhr, L. Development of a Mathematical Model Based on an Artificial Neural Network (ANN) to Predict Nickel Uptake Data by a Natural Zeolite. Phys. Sci. Forum 2023, 6, 4. [Google Scholar] [CrossRef]
Set of Ternary Mixtures Dyes (mg/L) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N° | TZ | AR | B1 | N° | TZ | AR | B1 | N° | TZ | AR | B1 | N° | TZ | AR | B1 |
1 | 0.0 | 0.0 | 0.0 | 17 | 5.0 | 0.0 | 0 | 33 | 10 | 0.0 | 0.0 | 49 | 20 | 0.0 | 0.0 |
2 | 0.0 | 0.0 | 2.5 | 18 | 5.0 | 0.0 | 2.5 | 34 | 10 | 0.0 | 2.5 | 50 | 20 | 0.0 | 2.5 |
3 | 0.0 | 0.0 | 5.0 | 19 | 5.0 | 0.0 | 5.0 | 35 | 10 | 0.0 | 5.0 | 51 | 20 | 0.0 | 5.0 |
4 | 0.0 | 0.0 | 10 | 20 | 5.0 | 0.0 | 10 | 36 | 10 | 0.0 | 10 | 52 | 20 | 0.0 | 10 |
5 | 0.0 | 5.0 | 0.0 | 21 | 5.0 | 5.0 | 0.0 | 37 | 10 | 5.0 | 0.0 | 53 | 20 | 5.0 | 0.0 |
6 | 0.0 | 5.0 | 2.5 | 22 | 5.0 | 5.0 | 2.5 | 38 | 10 | 5.0 | 2.5 | 54 | 20 | 5.0 | 2.5 |
7 | 0.0 | 5.0 | 5.0 | 23 | 5.0 | 5.0 | 5.0 | 39 | 10 | 5.0 | 5.0 | 55 | 20 | 5.0 | 5.0 |
8 | 0.0 | 5.0 | 10 | 24 | 5.0 | 5.0 | 10 | 40 | 10 | 5.0 | 10 | 56 | 20 | 5.0 | 10 |
9 | 0.0 | 10 | 0.0 | 25 | 5.0 | 10 | 0.0 | 41 | 10 | 10 | 0.0 | 57 | 20 | 10 | 0.0 |
10 | 0.0 | 10 | 2.5 | 26 | 5.0 | 10 | 2.5 | 42 | 10 | 10 | 2.5 | 58 | 20 | 10 | 2.5 |
11 | 0.0 | 10 | 5.0 | 27 | 5.0 | 10 | 5.0 | 43 | 10 | 10 | 5.0 | 59 | 20 | 10 | 5.0 |
12 | 0.0 | 10 | 10 | 28 | 5.0 | 10 | 10 | 44 | 10 | 10 | 10 | 60 | 20 | 10 | 10 |
13 | 0.0 | 20 | 0.0 | 29 | 5.0 | 20 | 0.0 | 45 | 10 | 20 | 0.0 | 61 | 20 | 20 | 0.0 |
14 | 0.0 | 20 | 2.5 | 30 | 5.0 | 20 | 2.5 | 46 | 10 | 20 | 2.5 | 62 | 20 | 20 | 2.5 |
15 | 0.0 | 20 | 5.0 | 31 | 5.0 | 20 | 5.0 | 47 | 10 | 20 | 5.0 | 63 | 20 | 20 | 5.0 |
16 | 0.0 | 20 | 10 | 32 | 5.0 | 20 | 10 | 48 | 10 | 20 | 10 | 64 | 20 | 20 | 10 |
Parameter | Value |
---|---|
Number of iterations | 200 |
Learning rate | 0.001 |
Hidden layer neurons activation function | ReLU |
Number of hidden layer neurons | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Moreno, J.C.; Rendon-Lara, E.; Jiménez-Núñez, M.d.l.L. Combination of Artificial Neural Networks and Principal Component Analysis for the Simultaneous Quantification of Dyes in Multi-Component Aqueous Mixtures. Appl. Sci. 2024, 14, 809. https://doi.org/10.3390/app14020809
Estrada-Moreno JC, Rendon-Lara E, Jiménez-Núñez MdlL. Combination of Artificial Neural Networks and Principal Component Analysis for the Simultaneous Quantification of Dyes in Multi-Component Aqueous Mixtures. Applied Sciences. 2024; 14(2):809. https://doi.org/10.3390/app14020809
Chicago/Turabian StyleEstrada-Moreno, Julio Cesar, Eréndira Rendon-Lara, and María de la Luz Jiménez-Núñez. 2024. "Combination of Artificial Neural Networks and Principal Component Analysis for the Simultaneous Quantification of Dyes in Multi-Component Aqueous Mixtures" Applied Sciences 14, no. 2: 809. https://doi.org/10.3390/app14020809
APA StyleEstrada-Moreno, J. C., Rendon-Lara, E., & Jiménez-Núñez, M. d. l. L. (2024). Combination of Artificial Neural Networks and Principal Component Analysis for the Simultaneous Quantification of Dyes in Multi-Component Aqueous Mixtures. Applied Sciences, 14(2), 809. https://doi.org/10.3390/app14020809