Damage Status and Failure Precursors of Different Coal Impact Types Based on Comprehensive Monitoring of Infrared Radiation and Acoustic Emission
Abstract
:1. Introduction
2. Experimental Methods
2.1. Specimen Preparation
2.2. Experimental Apparatus
- (1)
- The loading system adopts a micro-computer-controlled pressure machine. The displacement is 0.3 μm, the maximum test force is 600 kN, the sampling frequency is 1 kHz. It can collect and record mechanical and deformation parameters such as load and displacement during coal failure in real time.
- (2)
- The IR monitoring instrument model is Optris PI 450 (Optris, Berlin, Germany), with an optical resolution of 382 × 288. It can capture up to 80 Hz thermal images per second and accurately measure three temperature ranges: −20–100 °C, 0–250 °C, and 120–800 °C, with a temperature sensitivity of 0.04 K, and can accurately analyze the IRT change during coal body failure.
- (3)
- The AE monitoring adopts an 8-channel full waveform soft DS5 series acquisition instrument(Ruandao, Beijing, China), with a maximum sampling frequency of 10 MHz and an input signal voltage range of ±10 V. The response frequency of the AE sensor is 50–400 kHz, and the amplification factors of the preamplifier are adjustable at 20, 40, and 60 dB.
2.3. Testing Procedure
3. Results and Analysis
3.1. IR and AE Time Series Distribution of Different Coal Impact Types
3.2. IR and AE Spatial Distribution of Different Coal Impact Types
3.3. Damage Status and Failure Mode of Different Coal Impact Types
3.4. IR and AE Combined Instability Precursors of Different Coal Impact Types
4. Discussion
4.1. IR and AE Combined Damage Evolution Analysis of Different Coal Impact Types
4.2. Analysis of Damage and Failure Precursor Mechanism of Different Coal Impact Types Based on Energy Evolution
5. Conclusions
- (1)
- There is a good correspondence between the IR and AE time series and spatial distribution of different coal impact types. As the impact tendency increases, the intensity of the IR and AE signals released by the coal failure gradually increases, and the distribution of the AE localization points and infrared high-temperature area are gradually concentrated.
- (2)
- During the loading process, the coal body gradually transitions from tensile failure to shear failure. As the impact tendency increases, the proportion of the shear failure AE signals gradually increases during the failure stage, and the shear cracks of no-, weak-, and strong-impact coal are 39.9%, 50.9%, and 53.7%, respectively.
- (3)
- The combined IRT and AE sensitivity index K for different coal impact types is established. As the impact tendency increases, the IRT and AE sensitivity gradually increases, but the occurrence time of the failure precursors becomes later and later. The IRT and AE sensitive instability precursor of no-, weak-, and strong-impact coal appear as 55.2%, 66.3%, and 93.4%, respectively, of the coal instability and failure.
- (4)
- The combined damage variable DIA based on IR and AE is established. Before the IR and AE combined precursor point, the dissipated energy released by coal is less, and the DIA slowly increases. After the IR and AE combined precursor point, the dissipated energy and DIA increase rapidly, and the coal body will undergo instability and failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.G.; Ju, W.J.; Wang, H.; Zhang, J.W.; Yi, K.; Feng, Y.L.; Sun, L.W. Experimental study on anisotropic characteristics of impact tendency and failure model of hard coal. Chin. J. Rock. Mech. Eng. 2019, 038, 757–768. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, X.R.; Wang, E.Y.; Kong, X.G.; Zhang, C.; Liu, S.J.; Zhao, E.L. Effects of gas pressure on bursting liability of coal under uniaxial conditions. J. Nat. Gas. Sci. Eng. 2017, 39, 90–100. [Google Scholar] [CrossRef]
- Zang, Z.S.; Li, Z.H.; Zhao, E.L.; Kong, X.G.; Niu, Y.; Yin, S. Electric potential response characteristics and constitutive model of coal under axial static load–dynamic load coupling. Nat. Resour. Res. 2023, 32, 2821–2844. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Jiang, Y.D. Acoustic emission and thermal infrared precursors associated with bump-prone coal failure. Int. J. Coal Geol. 2010, 83, 11–20. [Google Scholar] [CrossRef]
- Qiu, L.M.; Liu, Z.T.; Wang, E.Y.; He, X.Q.; Feng, J.J.; Li, B.L. Early-warning of rock burst in coal mine by low-frequency electromagnetic radiation. Eng. Geol. 2020, 279, 105755. [Google Scholar] [CrossRef]
- Li, Z.H.; Yin, S.; Niu, Y.; Cheng, F.Q.; Liu, S.J.; Kong, Y.H.; Sun, Y.H.; Wei, Y. Experimental study on the infrared thermal imaging of a coal fracture under the coupled effects of stress and gas. J. Nat. Gas. Sci. Eng. 2018, 55, 444–451. [Google Scholar] [CrossRef]
- Cao, K.W.; Dong, F.R.; Yu, Y.H.; Khan, N.M.; Hussain, S.; Alarifi, S.S. Infrared radiation response mechanism of sandstone during loading and fracture process. Theor. Appl. Fract. Mech. 2023, 126, 103974. [Google Scholar] [CrossRef]
- Hao, T.X.; Li, F.; Tang, Y.J.; Wang, Z.H.; Zhao, L.Z. Infrared radiation characterization of damaged coal rupture based on stress distribution and energy. ACS Omega 2022, 7, 28545–28555. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.Q.; Ma, L.Q.; Liu, W.; Khan, N.M.; Cao, G.H.; Fang, Y.M.; Wang, H. Research on the denoising method of infrared thermogram during rock fracture. Infrared Phys. Technol. 2023, 131, 104651. [Google Scholar] [CrossRef]
- Tian, H.; Li, Z.H.; Liu, Z.; Yin, S.; Niu, Y.; Zhang, Q.C.; Chen, D. Visual characterization of coal gas desorption using infrared radiation. Energy 2024, 289, 130052. [Google Scholar] [CrossRef]
- Wu, L.X.; Liu, S.J.; Wu, Y.H.; Wang, C.Y. Precursors for rock fracturing and failure—Part I: IRR image abnormalities. Int. J. Rock. Mech. Min. 2006, 43, 473–482. [Google Scholar] [CrossRef]
- Sun, H.; Ma, L.Q.; Liu, W.; Spearing, A.J.S.; Han, J.; Fu, Y. The response mechanism of acoustic and thermal effect when stress causes rock damage. Appl. Acoust. 2021, 180, 108093. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.L.; Zhang, S.G.; Nawnit, K. Experimental investigation of acoustic emission and infrared radiation thermography of dynamic fracturing process of hard-rock pillar in extremely steep and thick coal seams. Eng. Fract. Mech. 2020, 226, 106845. [Google Scholar] [CrossRef]
- Ma, L.Q.; Sun, H. Spatial-temporal infrared radiation precursors of coal failure under uniaxial compressive loading. Infrared Phys. Technol. 2018, 93, 144–153. [Google Scholar] [CrossRef]
- Sun, H. Infrared radiation response mechanism and quantitative characterization during damage evolution of loading coal and rock. China Univ. Min. Technol. 2020. [Google Scholar] [CrossRef]
- Yin, S.; Li, Z.H.; Wang, E.Y.; Li, X.L.; Tian, H.; Niu, Y. Infrared temperature evolution law and thermal effect mechanism of concrete impact failure. J. Build. Eng. 2024, 91, 109592. [Google Scholar] [CrossRef]
- Liu, W.; Ma, L.Q.; Sun, H.; Khan, N.M. Using the characteristics of infrared radiation b-value during the rock fracture process to offer a precursor for serious failure. Infrared Phys. Technol. 2021, 114, 103644. [Google Scholar] [CrossRef]
- Lou, Q.; He, X.Q. Experimental study on infrared radiation temperature field of concrete under uniaxial compression. Infrared Phys. Technol. 2018, 90, 20–30. [Google Scholar] [CrossRef]
- Xiao, F.K.; He, J.; Liu, Z.J.; Shen, Z.L.; Liu, G. Analysis on warning signs of damage of coal samples with different water contents and relevant damage evolution based on acoustic emission and infrared characterization. Infrared Phys. Technol. 2019, 97, 287–299. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Liu, Y.; Cai, X.; Chang, Y.; Gao, S. Infrared radiation characteristics of sandstone exposed to impact loading. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 2555–2562. [Google Scholar] [CrossRef]
- Tang, Y.J.; Hao, T.X.; Liu, J.; Li, F.; Zhao, Z.; Wang, Z.H.; Wang, H.C.; Liu, X. Characterization of infrared radiation and fracture evolution during destabilization of coal bodies with different degrees of damage. Rock Soil. Mech. 2023, 44, 2907–2920. [Google Scholar] [CrossRef]
- Khan, N.M.; Ma, L.Q.; Feroze, T.; Wang, D.L.; Cao, K.W.; Gao, Q.Q.; Wang, H.; Hussain, S.; Zhang, Z.T.; Alarifi, S. Investigating average infrared radiation temperature characteristics during shear and tensile cracks in sandstone under different water contents. Infrared Phys. Technol. 2023, 135, 104968. [Google Scholar] [CrossRef]
- Ma, L.Q.; Sun, H.; Ngo, I.; Han, J. Infrared radiation quantification of rock damage and its constitutive modeling under loading. Infrared Phys. Technol. 2022, 121, 104044. [Google Scholar] [CrossRef]
- Yin, S.; Li, Z.; Wang, E.; Niu, Y.; Tian, H.; Li, X.; Li, H.Y.; Yang, C.J. The infrared thermal effect of coal failure with different impact types and its relationship with bursting liability. Infrared Phys. Technol. 2024, 138, 105263. [Google Scholar] [CrossRef]
- Li, Z.H.; Lou, Q.; Wang, E.Y.; Kong, B.; Niu, Y.; Li, G.A. Experimental study of acoustic-electric and thermal infrared characteristics of roof rock failure. J. China Univ. Min. Technol. 2016, 45, 1098–1103. [Google Scholar] [CrossRef]
- Wang, C.L.; Lu, Z.J.; Liu, L.; Chuai, X.S.; Lu, H. Predicting points of the infrared precursor for limestone failure under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2016, 88, 34–43. [Google Scholar] [CrossRef]
- Di, Y.Y.; Wang, E.Y.; Huang, T. Identification method for microseismic, acoustic emission and electromagnetic radiation interference signals of rock burst based on deep neural networks. Int. J. Rock Mech. Min. Sci. 2023, 170, 105541. [Google Scholar] [CrossRef]
- Ding, Z.W.; Li, X.F.; Huang, X.; Wang, M.B.; Tang, Q.B.; Jia, J.D. Feature extraction; recognition, and classification of acoustic emission waveform signal of coal rock sample under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2022, 160, 105262. [Google Scholar] [CrossRef]
- Su, G.S.; Huang, L.; Qin, Y.Z.; Yan, X. Experimental study of the “AE quiet period” on the eve of brittle failure in hard rock. Eng. Fail. Anal. 2024, 162, 108391. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Liang, B.; Wang, D.; Luan, H.J.; Zhang, G.C.; Dong, L.; Chen, L.G. Experimental study on failure mechanical properties and acoustic emission characteristics of soft rock–coal combination under dynamic disturbance. Eng. Fail. Anal. 2024, 158, 108016. [Google Scholar] [CrossRef]
- Xu, C.; Wang, W.H.; Wang, K.; Hu, K.; Cao, Z.G.; Zhang, Y. Influence of coal-rock interface inclination on the damage and failure law of original coal-rock combination. Eng. Fail. Anal. 2024, 161, 108275. [Google Scholar] [CrossRef]
- Yu, X.; Zuo, J.P.; Mao, L.T.; Xu, X.W.; Lei, B.; Zhao, S.K. Uncovering the progressive failure process of primary coal-rock mass specimens: Insights from energy evolution, acoustic emission crack patterns, and visual characterization. Int. J. Rock Mech. Min. Sci. 2024, 178, 105773. [Google Scholar] [CrossRef]
- Du, K.; Luo, X.Y.; Liu, M.H.; Liu, X.L.; Zhou, J. Understanding the evolution mechanism and classification criteria of tensile-shear cracks in rock failure process from acoustic emission (AE) characteristics. Eng. Fract. Mech. 2024, 296, 109864. [Google Scholar] [CrossRef]
- Bi, J.; Zhao, Y.; Wu, Z.J.; Li, J.S.; Wang, C.L. Research on crack classification method and failure precursor index based on RA-AF value of brittle rock. Theor. Appl. Fract. Mech. 2024, 129, 104179. [Google Scholar] [CrossRef]
- Dong, L.J.; Zhang, Y.H.; Ma, J. Micro-crack mechanism in the fracture evolution of saturated granite and enlightenment to the precursors of instability. Sensors 2020, 20, 4595. [Google Scholar] [CrossRef]
- Liu, W.; Ma, L.Q.; Sun, H.; Khan, N.M. An experimental study on infrared radiation and acoustic emission characteristics during crack evolution process of loading rock. Infrared Phys. Technol. 2021, 118, 103864. [Google Scholar] [CrossRef]
- Chen, G.Q.; Li, Y.; Chen, Y.F.; Ma, G.; Wu, Z.L. Thermal-acoustic sensitivity analysis of fractured rock with different lithologies. Chin. J. Rock Mech. Eng. 2022, 41, 1945–1957. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, B.L.; Zhao, T.B. Study on the law of failure acoustic–thermal signal of weakly cemented fractured rock with different dip angles. Rock Mech. Rock Eng. 2023, 56, 4557–4568. [Google Scholar] [CrossRef]
- GB/T 25217.2; The National Standards Compilation Groups of People′s Republic of China. GB/T 25217.2—2010 Methods for Test, Monitoring and Prevention of Rock Burst—Part2: Classification and Laboratory Test Method on Bursting Liability of Coal. Standards Press of China: Beijing, China, 2010. (In Chinese)
- Zhang, X.; Li, Z.H.; Wang, E.Y.; Li, B.L.; Song, J.J.; Niu, Y. Experimental investigation of pressure stimulated currents and acoustic emissions from sandstone and gabbro samples subjected to multi-stage uniaxial loading. Bull. Eng. Geol. Environ. 2021, 80, 7683–7700. [Google Scholar] [CrossRef]
- Zhao, Q.C.; Tu, M.; Fu, B.J.; Li, J.W.; Dang, J.X.; Qi, C. Acoustic emission and failure characteristics of coal and rock under single-free-face true triaxial loading. Eng. Fail. Anal. 2024, 161, 108299. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wu, D.; Zhao, Z.X.; Yang, Y.; Tian, J.W.; Wang, F.L. Experimental and numerical study on the damage evolution and acoustic emission multi-parameter responses of single flaw sandstone under uniaxial compression. Theor. Appl. Fract. Mech. 2024, 133, 104535. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, C.L.; Zhao, Y.; Bi, J.; Niu, Y.; Lian, S.L. A dominant frequency-based hierarchical clustering method for evaluating the mode-II fracture mechanisms of shale using the acoustic emission technique. Theor. Appl. Fract. Mech. 2024, 134, 104644. [Google Scholar] [CrossRef]
- Radhika, V.; Kishen, J.M.C. A comparative study of crack growth mechanisms in concrete through acoustic emission analysis: Monotonic versus fatigue loading. Constr. Build. Mater. 2024, 432, 136568. [Google Scholar] [CrossRef]
- Shen, F.; He, S.Q.; Song, D.Z.; He, X.Q.; Yang, G. Response characteristics of acoustic emission signal and judgment criteria for different fracture modes. Eng. Fract. Mech. 2024, 296, 109862. [Google Scholar] [CrossRef]
- Yang, H.Z.; Wang, E.Y.; Wang, X.R.; Song, Y.; Chen, D.; Wanga, D.M.; Li, J.Y. Predicting the failure of rock using critical slowing down theory on acoustic emission characteristics. Eng. Fail. Anal. 2024, 163, 108474. [Google Scholar] [CrossRef]
- Liu, Q.; Song, D.; Qiu, L.; Xiao, Y.Z.; Yin, S.; Peng, Y.J.; Cao, Y.L.; Wang, H.; Gao, L. An experimental study of the resistivity response on fracture process of sandstone with pre-existing flaw. Theor. Appl. Fract. Mech. 2022, 121, 103487. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wu, W.R.; Yao, X.L.; Liang, P.; Tian, B.Z.; Huang, Y.L.; Liang, J.L. Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression. Rock Soil. Mech. 2020, 41, 139–146. [Google Scholar] [CrossRef]
- Li, B.; He, Y.Z.; Li, L.; Zhang, J.X.; Shi, Z.; Zhang, Y.P. Damage evolution of rock containing prefabricated cracks based on infrared radiation and energy dissipation. Theor. Appl. Fract. Mech. 2023, 125, 103853. [Google Scholar] [CrossRef]
- Kachanov, L.M. Time of the rupture process under creep conditions. Izy Akad. Nank S. S. R. Otd Tech Nauk. 1958, 8, 26–31. [Google Scholar]
- Cao, W.G.; Zhao, M.H.; Liu, C.X. Study on the model and its modifying method for rock softening and damage based on Weibull random distribution. Chin. J. Rock Mech. Eng. 2004, 23, 3226–3231. [Google Scholar] [CrossRef]
- Xie, H.P. Damage Mechanics of Rock and Concrete; China University of Mining and Technology Press: Xuzhou, China, 1990. [Google Scholar]
- Zang, Z.S.; Li, Z.H.; Niu, Y.; Yin, S. Experimental investigation of the fracture and damage evolution characteristics of flawed coal based on electric potential and acoustic emission parameter analyses. Eng. Fract. Mech. 2024, 295, 109740. [Google Scholar] [CrossRef]
- Yang, H.Z.; Wang, X.R.; Wang, E.Y.; Song, Y.; Chen, D.; Zhang, Y.D.; Liu, W.Z. Macro-micro crack and damage evolution characteristics of concrete: After the action of acidic drying-saturation cycle. Constr. Build. Mater. 2024, 411, 134601. [Google Scholar] [CrossRef]
- Xie, H.; Li, L.; Ju, Y.; Peng, R.; Yang, Y. Energy analysis for damage and catastrophic failure of rocks. Sci. China Technol. Sci. 2011, 54, 199–209. [Google Scholar] [CrossRef]
- Yin, S.; Song, D.Z.; He, X.Q.; Lou, Q.; Qiu, L.M.; Li, Z.L.; Chen, P.; Li, J.; Liu, Y. Structural health monitoring of building rock based on stress drop and acoustic-electric energy release. Struct. Control Health Monit. 2022, 29, e2875. [Google Scholar] [CrossRef]
- Yang, H.Z.; Wang, E.Y.; Cheng, D.Q.; Wang, X.R.; Li, B.L.; Song, Y.; Wang, D.M.; Liu, W.Z. Characteristics of energy evolution and acoustic emission response of concrete under the action of acidic drying-saturation processes cycle. J. Build. Eng. 2023, 74, 106928. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, X.L.; Tan, Y.L.; Wang, R.S.; Xie, W.Q.; Wang, E.Z.; Liu, X.S.; Shang, J.L. Experimental study of loading system stiffness effects on mechanical characteristics and kinetic energy calculation of coal specimens. Rock Mech. Rock Eng. 2024, 1–17. [Google Scholar] [CrossRef]
- Mo, Y.L.; Li, H.Y.; Sun, Z.X.; Li, L.; Wang, J.D. Analysis on effect of primary fractures structure on physical and mechanical properties of coal rock. Coal Sci. Technol. 2020, 48, 25–34. [Google Scholar] [CrossRef]
- Sun, Z.X. The Coal Rock Mesoscopie Structure Characteristies and Its Effect on Bursting Liability. Master’s Thesis, Liaoning Technical University, Fuxin, China, 2016. [Google Scholar]
- Ju, W.J.; Lu, Z.G.; Gao, F.Q.; Zhao, Y.X.; Li, W.Z.; Sun, Z.Y.; Hao, X.J. Research progress and comprehensive quantitative evaluation index of coal rock bursting liability. Chin. J. Rock Mech. Eng. 2021, 40, 1839–1856. [Google Scholar] [CrossRef]
- Liu, W.; Ma, L.Q.; Gao, Q.Q.; Wang, H.; Fang, Y.M.; Ma, Q.; Sun, H.; Zhang, Z.T. Failure precursors recognition method for loading coal and rock using the fracture texture features of infrared thermal images. Infrared Phys. Technol. 2024, 139, 105319. [Google Scholar] [CrossRef]
- Lou, Q.; Song, D.Z.; He, X.Q.; Li, Z.L.; Qiu, L.M.; Wei, M.H.; He, S.Q. Correlations between acoustic and electromagnetic emissions and stress drop induced by burst-prone coal and rock fracture. Saf. Sci. 2019, 115, 310–319. [Google Scholar] [CrossRef]
- Wang, X.R.; Shan, T.C.; Liu, S.X.; Li, Z.H.; Liu, X.F.; Wang, E.Y.; Li, N.; Wang, J.H. Thermal-damage effects on fracturing evolution of granite under compression-shear loading. Theor. Appl. Fract. Mech. 2024, 133, 104581. [Google Scholar] [CrossRef]
Category | E/GPa | Rc/MPa | DT/ms | KE | WST |
---|---|---|---|---|---|
No-impact coal | 1.44 | 6.49 | 2594.8 | 1.42 | 0.57 |
Weak-impact coal | 2.30 | 13.69 | 414.85 | 3.40 | 8.35 |
Strong-impact coal | 4.69 | 34.94 | 41.72 | 31.95 | 766.05 |
Numbers | Coordinates | ||
---|---|---|---|
x | y | z | |
1 | 0 | 25 | 90 |
2 | 0 | 25 | 50 |
3 | 0 | 25 | 10 |
4 | 10 | 50 | 90 |
5 | 40 | 50 | 10 |
6 | 50 | 25 | 90 |
7 | 50 | 25 | 50 |
8 | 50 | 25 | 10 |
Crack Type | Type | Stage I | Stage II | Stage III | Stage IV |
---|---|---|---|---|---|
Tensile crack | No impact | 76.40 | 68.44 | 53.93 | 60.08 |
Weak impact | 88.94 | 73.58 | 59.86 | 49.14 | |
Strong impact | 90.60 | 79.07 | 68.93 | 46.26 | |
Shear crack | No impact | 23.60 | 31.56 | 46.07 | 39.92 |
Weak impact | 11.06 | 26.42 | 40.14 | 50.86 | |
Strong impact | 9.40 | 20.93 | 31.07 | 53.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Li, Z.; Wang, E.; Liu, Y.; Niu, Y.; Yang, H. Damage Status and Failure Precursors of Different Coal Impact Types Based on Comprehensive Monitoring of Infrared Radiation and Acoustic Emission. Appl. Sci. 2024, 14, 8792. https://doi.org/10.3390/app14198792
Yin S, Li Z, Wang E, Liu Y, Niu Y, Yang H. Damage Status and Failure Precursors of Different Coal Impact Types Based on Comprehensive Monitoring of Infrared Radiation and Acoustic Emission. Applied Sciences. 2024; 14(19):8792. https://doi.org/10.3390/app14198792
Chicago/Turabian StyleYin, Shan, Zhonghui Li, Enyuan Wang, Yubing Liu, Yue Niu, and Hengze Yang. 2024. "Damage Status and Failure Precursors of Different Coal Impact Types Based on Comprehensive Monitoring of Infrared Radiation and Acoustic Emission" Applied Sciences 14, no. 19: 8792. https://doi.org/10.3390/app14198792
APA StyleYin, S., Li, Z., Wang, E., Liu, Y., Niu, Y., & Yang, H. (2024). Damage Status and Failure Precursors of Different Coal Impact Types Based on Comprehensive Monitoring of Infrared Radiation and Acoustic Emission. Applied Sciences, 14(19), 8792. https://doi.org/10.3390/app14198792