Automatizing Automatic Controller Design Process: Designing Robust Automatic Controller under High-Amplitude Disturbances Using Particle Swarm Optimized Neural Network Controller
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Automatic Control Concepts
1.2. Intelligent Control Systems
1.3. DC Motor Control
2. Materials and Methods
2.1. Proposed System
- (1)
- Choose limits of controller output;
- (2)
- Design an optimal PI controller using the PSO algorithm;
- (3)
- For fine-tuning, design a neural network controller with the PSO algorithm.
2.2. Past and Future Windows
2.3. Training Neural Networks with PSO
2.4. Discretization and Implementation of System
3. Results
g (optimal neural weight vector) = [[ −2.00956934 × 10−2, 2.28251818 × 10−2, 3.66802550 × 10−3, 4.68787594 × 10−3, 1.10714396 × 10−2, −1.25274995 × 10−3, −1.10151555 × 10−2, 7.51440490 × 10−2, −1.35266461 × 10−2, −2.01238715 × 10−2, 5.46645054 × 10−2, −6.47748694 × 10−3, 2.40590535 × 10−2, 1.97057222 × 10−2, 5.17743275 × 10−2, 1.81642138 × 10−2, 4.33055085 × 10−2, 1.74264836 × 10−2, −4.58121589 × 10−3, 1.42641135 × 10−2, −5.47776784 × 10−4, −1.76951475 × 10−3, 1.28168151 × 10−2, 2.82062853 × 10−2, −1.77549715 × 10−3, 1.81045855 × 10−2, 5.28164547 × 10−2, 2.44388379 × 10−2, −2.53992993 × 10−2, 2.23594722 × 10−5, −2.43687957 × 10−2, −7.82207853 × 10−2, −1.04065066 × 10−2, −1.26254889 × 10−1, 3.25520224 × 10−3, 1.74701081 × 10−2, −4.47201247 × 10−3, 1.54930364 × 10−3, −2.17759436 × 10−2, 1.09310672 × 10−1, 1.88470285 × 10−1, 1.53151263 × 10−1, 2.12573135 × 10−1, 5.96647710 × 10−2, −6.36103418 × 10−3, −1.65250932 × 10−3, 4.89734504 × 10−2, −4.26310941 × 10−3, 1.64341826 × 10−3, −5.74545106 × 10−5, −6.14562688 × 10−1, −8.89053434 × 10−3, −8.76923913 × 10−4, 2.78282565 × 10−2, −7.14593811 × 10−2, 2.30802202 × 10−2, 4.75389489 × 10−2, 3.08541814 × 10−3, −1.33222498 × 10−3, 4.06371354 × 10−3, −4.34424866 × 10−2, 9.25887701 × 10−2, −1.17017702 × 10−3, −3.28774384 × 10−2, 5.91127735 × 10−3, −6.76456032 × 10−2, 3.54275769 × 10−3, −2.80618073 × 10−2, −8.29980821 × 10−2, −4.68078831 × 10−2, −7.70450798 × 10−3, −5.71033232 × 10−4, −1.97019313 × 10−1, 4.10303154 × 10−3, 5.82616963 × 10−5, −9.41320891 × 10−3, 1.49802579 × 10−1, 3.78894107 × 10−3, −5.41212802 × 10−1, −2.03641023 × 10−1, 6.36523382 × 10−4, −4.50341962 × 10−2, −3.60406881 × 10−1, −3.54286361 × 10−2, −1.45335544 × 10−2, −8.99566061 × 10−2, 1.89285696 × 10−1, 2.08332606 × 10−1, −5.91208362 × 10−3, 2.05832348 × 10−2, −2.71000803 × 10−2, 1.92909940 × 10−2, 9.39732840 × 10−1, −4.22809155 × 10−2, −1.97117429 × 10−2, −2.09135482 × 10−2, −1.09053803 × 10−2, 1.60087125 × 10−3, −1.12127972 × 10−2, 1.26364099 × 10−1, −1.46189620 × 10−3, 4.01717382 × 10−2, −3.45090396 × 10−1, 1.69375043 × 10−2, 1.18870052 × 10−3, 1.29719444 × 10−2, 4.57404515 × 10−2, 6.09297038 × 10−2, −1.67111878 × 10−2, 2.74538418 × 10−2, 7.76283972 × 10−2, −9.87016593 × 10−3, 9.83296904 × 10−3, 9.26160487 × 10−3, −1.33904678 × 10−1, −4.46698801 × 10−2, −6.22031478 × 10−2, −2.08484381 × 10−2, −1.36635522 × 10−3, 2.37264064 × 10−2, 8.05530251 × 10−2, 6.80355357 × 10−2, −1.95685395 × 10−2]] |
4. Discussion
4.1. Performance Issues
4.2. Implementation Issues
4.3. Ethical Issues
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ogata, K. Modern Control Engineering, 5th ed.; Prentice Hall: Saddle River, NJ, USA, 2010. [Google Scholar]
- Bissell, C. A history of automatic control. In Springer Handbook of Automation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 53–69. [Google Scholar]
- Baidya, D.; Dhopte, S.; Bhattacharjee, M. Sensing System Assisted Novel PID Controller for Efficient Speed Control of DC Motors in Electric Vehicles. IEEE Sens. Lett. 2023, 7, 1–4. [Google Scholar] [CrossRef]
- Munagala, V.K.; Jatoth, R.K. A novel approach for controlling DC motor speed using NARXnet based FOPID controller. Evol. Syst. 2023, 14, 101–116. [Google Scholar] [CrossRef]
- Saputra, D.; Ma’Arif, A.; Maghfiroh, H.; Chotikunnan, P.; Rahmadhia, S.N. Design and Application of PLC-based Speed Control for DC Motor Using PID with Identification System and MATLAB Tuner. Int. J. Robot. Control Syst. 2023, 3, 233–244. [Google Scholar] [CrossRef]
- Ekinci, S.; Izci, D.; Yilmaz, M. Efficient Speed Control for DC Motors Using Novel Gazelle Simplex Optimizer. IEEE Access 2023, 11, 105830–105842. [Google Scholar] [CrossRef]
- Yıldırım, Ş.; Bingol, M.S.; Savas, S. Tuning PID controller parameters of the DC motor with PSO algorithm. Int. Rev. Appl. Sci. Eng. 2024. [Google Scholar] [CrossRef]
- Son, J.; Kang, H.; Kang, S.H. A Review on Robust Control of Robot Manipulators for Future Manufacturing. Int. J. Precis. Eng. Manuf. 2023, 24, 1083–1102. [Google Scholar] [CrossRef]
- Han, D.; Mulyana, B.; Stankovic, V.; Cheng, S. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation. Sensors 2023, 23, 3762. [Google Scholar] [CrossRef]
- Pistone, A.; Ludovico, D.; Verme, L.D.M.C.D.; Leggieri, S.; Canali, C.; Caldwell, D.G. Modelling and control of manipulators for inspection and maintenance in challenging environments: A literature review. Annu. Rev. Control 2024, 57, 100949. [Google Scholar] [CrossRef]
- Bilal, H.; Yin, B.; Aslam, M.S.; Anjum, Z.; Rohra, A.; Wang, Y. A practical study of active disturbance rejection control for rotary flexible joint robot manipulator. Soft Comput. 2023, 27, 4987–5001. [Google Scholar] [CrossRef]
- Chotikunnan, P.; Chotikunnan, R. Dual Design PID Controller for Robotic Manipulator Application. J. Robot. Control 2023, 4, 23–34. [Google Scholar] [CrossRef]
- Villa-Tiburcio, J.F.; Estrada-Torres, J.A.; Hernández-Alvarado, R.; Montes-Martínez, J.R.; Bringas-Posadas, D.; Franco-Urquiza, E.A. ANN Enhanced Hybrid Force/Position Controller of Robot Manipulators for Fiber Placement. Robotics 2024, 13, 105. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Yang, C.-Y.; Lin, H.-W. Robust Adaptive-Sliding-Mode Control for Teleoperation Systems with Time-Varying Delays and Uncertainties. Robotics 2024, 13, 89. [Google Scholar] [CrossRef]
- Kouvakas, N.D.; Koumboulis, F.N.; Sigalas, J. A Two Stage Nonlinear I/O Decoupling and Partially Wireless Controller for Differential Drive Mobile Robots. Robotics 2024, 13, 26. [Google Scholar] [CrossRef]
- Bernardo, R.; Sousa, J.M.C.; Botto, M.A.; Gonçalves, P.J.S. A Novel Control Architecture Based on Behavior Trees for an Omni-Directional Mobile Robot. Robotics 2023, 12, 170. [Google Scholar] [CrossRef]
- Miquelanti, M.G.; Pugliese, L.F.; Silva, W.W.A.G.; Braga, R.A.S.; Monte-Mor, J.A. Comparison between an Adaptive Gain Scheduling Control Strategy and a Fuzzy Multimodel Intelligent Control Applied to the Speed Control of Non-Holonomic Robots. Appl. Sci. 2024, 14, 6675. [Google Scholar] [CrossRef]
- Rodriguez-Castellanos, D.; Blas-Valdez, M.; Solis-Perales, G.; Perez-Cisneros, M.A. Neural Robust Control for a Mobile Agent Leader–Follower System. Appl. Sci. 2024, 14, 5374. [Google Scholar] [CrossRef]
- Polakovič, D.; Juhás, M.; Juhásová, B.; Červeňanská, Z. Bio-Inspired Model-Based Design and Control of Bipedal Robot. Appl. Sci. 2022, 12, 10058. [Google Scholar] [CrossRef]
- Chi, K.-H.; Hsiao, Y.-F.; Chen, C.-C. Robust Feedback Linearization Control Design for Five-Link Human Biped Robot with Multi-Performances. Appl. Sci. 2023, 13, 76. [Google Scholar] [CrossRef]
- Godinez-Garrido, G.; Santos-Sánchez, O.-J.; Romero-Trejo, H.; García-Pérez, O. Discrete Integral Optimal Controller for Quadrotor Attitude Stabilization: Experimental Results. Appl. Sci. 2023, 13, 9293. [Google Scholar] [CrossRef]
- Sonugür, G.; Gökçe, C.O.; Koca, Y.B.; Inci, Ş.S.; Keleş, Z. Particle swarm optimization based optimal PID controller for quadcopters. Comptes Rendus l’Acade’mie Bulg. Sci. 2021, 74, 1806–1814. [Google Scholar]
- He, Y.; Luo, X.; Wang, X. Research and Simulation Analysis of Fuzzy Intelligent Control System Algorithm for a Servo Precision Press. Appl. Sci. 2024, 14, 6592. [Google Scholar] [CrossRef]
- Alhamrouni, I.; Kahar, N.H.A.; Salem, M.; Swadi, M.; Zahroui, Y.; Kadhim, D.J.; Mohamed, F.A.; Nazari, M.A. A Comprehensive Review on the Role of Artificial Intelligence in Power System Stability, Control, and Protection: Insights and Future Directions. Appl. Sci. 2024, 14, 6214. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, W.; Liu, Y.; Zeng, M.; Ding, W.; Li, S.; Li, G.; Li, Z.; Knoll, A. Efficient Online Planning and Robust Optimal Control for Nonholonomic Mobile Robot in Unstructured Environments. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 1–17. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhary, K.S. Neural network based fractional order sliding mode tracking control of nonholonomic mobile robots. J. Comput. Anal. Appl. 2024, 33, 73. [Google Scholar]
- Freitas, J.B.S.; Marquezan, L.; Evald, P.J.D.d.O.; Peñaloza, E.A.G.; Cely, M.M.H. A fuzzy-based Predictive PID for DC motor speed control. Int. J. Dyn. Control 2024, 12, 2511–2521. [Google Scholar] [CrossRef]
- Çelik, E.; Bal, G.; Öztürk, N.; Bekiroglu, E.; Houssein, E.H.; Ocak, C.; Sharma, G. Improving speed control characteristics of PMDC motor drives using nonlinear PI control. Neural Comput. Appl. 2024, 36, 9113–9124. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Dawane, M.K.; Malwatkar, G.M.; Deshmukh, S.P. Performance improvement of DC servo motor using sliding mode controller. J. Auton. Intell. 2023, 7. [Google Scholar] [CrossRef]
- Gökçe, C.O. On Model Complexity and Representation Power of Artificial Neural Networks. In Engineering from Machine Learning to Virtual Reality; Şaşmaz, M., Ed.; IKSAD: Ankara, Turkey, 2022; Volume 37–52, 168p, ISBN 978-625-6380-94-3. [Google Scholar]
- Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93. [Google Scholar]
- Thomas, G.B.; Weir, M.D.; Hass, J. Thomas’ Calculus: Multivariable; Pearson Education: Hoboken, NJ, USA, 2010. [Google Scholar]
Signal Number | Type | Amplitude (rad/s) | Frequency (Hz) | Acc. Time (ms) | Dec. Time (ms) |
---|---|---|---|---|---|
1 | step | 50 | NA | NA | NA |
2 | step | 70 | NA | NA | NA |
3 | step | 90 | NA | NA | NA |
4 | step | 100 | NA | NA | NA |
5 | sine | 50 | 2 | NA | NA |
6 | sine | 50 | 3 | NA | NA |
7 | sine | 50 | 5 | NA | NA |
8 | sine | 100 | 2 | NA | NA |
9 | sine | 100 | 3 | NA | NA |
10 | sine | 100 | 5 | NA | NA |
Signal Number | Type | Amplitude (Volts) | Frequency (Hz) | Acc. Time (ms) | Dec. Time (ms) |
---|---|---|---|---|---|
1 | step | 1 | NA | NA | NA |
2 | step | 1.5 | NA | NA | NA |
3 | step | 2 | NA | NA | NA |
4 | step | 3 | NA | NA | NA |
5 | sine | 1 | 5 | NA | NA |
6 | sine | 1 | 20 | NA | NA |
7 | sine | 2 | 5 | NA | NA |
8 | sine | 2 | 20 | NA | NA |
9 | sine | 3 | 5 | NA | NA |
10 | sine | 3 | 20 | NA | NA |
Signal Number | Type | Amplitude (rad/s) | Frequency (Hz) | Acc. Time (ms) | Dec. Time (ms) |
---|---|---|---|---|---|
1 | step | 100 | NA | NA | NA |
2 | square | 100 | 2 | NA | NA |
3 | square | 100 | 3 | NA | NA |
4 | square | 100 | 4 | NA | NA |
5 | square | 100 | 5 | NA | NA |
6 | square | 100 | 6 | NA | NA |
7 | square | 100 | 8 | NA | NA |
8 | square | 100 | 10 | NA | NA |
9 | trapezoid | 100 | NA | 200 | 200 |
10 | trapezoid | 100 | NA | 100 | 100 |
Signal Number | Type | Amplitude (Volts) | Frequency (Hz) | Acc. Time (ms) | Dec. Time (ms) |
---|---|---|---|---|---|
1 | square | 1 | 5 | NA | NA |
2 | square | 1 | 10 | NA | NA |
3 | square | 1 | 20 | NA | NA |
4 | square | 2 | 5 | NA | NA |
5 | square | 2 | 10 | NA | NA |
6 | square | 2 | 20 | NA | NA |
7 | sawtooth | 1 | 5 | NA | NA |
8 | sawtooth | 1 | 20 | NA | NA |
9 | sawtooth | 2 | 5 | NA | NA |
10 | sawtooth | 2 | 20 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gökçe, C.O. Automatizing Automatic Controller Design Process: Designing Robust Automatic Controller under High-Amplitude Disturbances Using Particle Swarm Optimized Neural Network Controller. Appl. Sci. 2024, 14, 7859. https://doi.org/10.3390/app14177859
Gökçe CO. Automatizing Automatic Controller Design Process: Designing Robust Automatic Controller under High-Amplitude Disturbances Using Particle Swarm Optimized Neural Network Controller. Applied Sciences. 2024; 14(17):7859. https://doi.org/10.3390/app14177859
Chicago/Turabian StyleGökçe, Celal Onur. 2024. "Automatizing Automatic Controller Design Process: Designing Robust Automatic Controller under High-Amplitude Disturbances Using Particle Swarm Optimized Neural Network Controller" Applied Sciences 14, no. 17: 7859. https://doi.org/10.3390/app14177859
APA StyleGökçe, C. O. (2024). Automatizing Automatic Controller Design Process: Designing Robust Automatic Controller under High-Amplitude Disturbances Using Particle Swarm Optimized Neural Network Controller. Applied Sciences, 14(17), 7859. https://doi.org/10.3390/app14177859