Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Fuel Cell Electric Vehicle
2.2. Digital Vehicle Model
2.3. Data-Driven Validation
2.4. Optimization Assessment Cycles
2.5. The BESA
2.5.1. Selection Phase
2.5.2. Search Phase
2.5.3. Swooping Phase
50 < SoCmax < 80
SoCmin < SoC (t) < SoCmax
H2 < 10
BC < 5
3. Results
4. Conclusions
- The number of battery packs has a slight impact on optimal SoC ratios.
- An increase in the number of battery packs reduces hydrogen consumption.
- As the number of battery packs increases, the effectiveness of the optimization algorithm also increases.
- Increasing the optimal SoC range causes excessive hydrogen consumption while decreasing it causes excessive battery usage.
- The energy recovered through regenerative braking reduces hydrogen consumption.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yavaş, Ö.; Savran, E.; Nalbur, B.E.; Karpat, F. Energy and Carbon Loss Management in an Electric Bus Factory for Energy Sustainability. Transdiscipl. J. Eng. Sci. 2022, 13, 97–110. [Google Scholar] [CrossRef]
- Ennetta, R.; Soyhan, H.S.; Koyunoğlu, C.; Demir, V.G. Current Technologies and Future Trends for Biodiesel Production: A Review. Arab. J. Sci. Eng. 2022, 47, 15133–15151. [Google Scholar] [CrossRef]
- Demir, V.G.; Yuksel, H.; Koten, H.; Zafer Gul, M.; Soyhan, H.S. Microwave-Assisted Pilot-Scale Biodiesel Production and Engine Tests. Proc. Inst. Civ. Eng. Energy 2019, 172, 1–11. [Google Scholar] [CrossRef]
- Ang, T.Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions. Energy Strateg. Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Almasri, R.A.; Abu-Hamdeh, N.H.; Al-Tamimi, N. A State-of-the-Art Review of Energy-Efficient and Renewable Energy Systems in Higher Education Facilities. Front. Energy Res. 2023, 11, 1344216. [Google Scholar] [CrossRef]
- Küfeoğlu, S.; Üçler, Ş.; Eskicioğlu, F.; Öztürk, E.B.; Chen, H. Daylight Saving Time Policy and Energy Consumption. Energy Rep. 2021, 7, 5013–5025. [Google Scholar] [CrossRef]
- Topal, O.; Nakir, İ. Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City. Energies 2018, 11, 2369. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, S.; Guo, J. Understanding the Influence of State of Health on the Range Anxiety of Battery Electric Vehicle Drivers. IET Intell. Transp. Syst. 2021, 15, 286–296. [Google Scholar] [CrossRef]
- Rainieri, G.; Buizza, C.; Ghilardi, A. Transportation Research Part F: Psychology and Behaviour the Psychological, Human Factors and Socio-Technical Contribution: A Systematic Review towards Range Anxiety of Battery Electric Vehicles’ Drivers. Transp. Res. Part F Psychol. Behav. 2023, 99, 52–70. [Google Scholar] [CrossRef]
- Chakraborty, P.; Parker, R.; Hoque, T.; Cruz, J.; Du, L.; Wang, S.; Bhunia, S. Addressing the Range Anxiety of Battery Electric Vehicles with Charging En Route. Sci. Rep. 2022, 12, 5588. [Google Scholar] [CrossRef]
- Rabih, M.; Takruri, M.; Al-Hattab, M.; Alnuaimi, A.A.; Bin Thaleth, M.R. Wireless Charging for Electric Vehicles: A Survey and Comprehensive Guide. World Electr. Veh. J. 2024, 15, 118. [Google Scholar] [CrossRef]
- Andrenacci, N.; Valentini, M.P. A Literature Review on the Charging Behaviour of Private Electric Vehicles. Appl. Sci. 2023, 13, 12877. [Google Scholar] [CrossRef]
- De Wolf, D.; Smeers, Y. Comparison of Battery Electric Vehicles and Fuel Cell Vehicles. World Electr. Veh. J. 2023, 14, 262. [Google Scholar] [CrossRef]
- Kim, M.S.; Jeon, H.K.; Lee, K.W.; Ryu, J.H.; Choi, S.W. Analysis of Hydrogen Filling of 175 Liter Tank for Large-Sized Hydrogen Vehicle. Appl. Sci. 2022, 12, 4856. [Google Scholar] [CrossRef]
- Gray, N.; O’Shea, R.; Wall, D.; Smyth, B.; Lens, P.N.L.; Murphy, J.D. Batteries, Fuel Cells, or Engines? A Probabilistic Economic and Environmental Assessment of Electricity and Electrofuels for Heavy Goods Vehicles. Adv. Appl. Energy 2022, 8, 100110. [Google Scholar] [CrossRef]
- Waseem, M.; Amir, M.; Lakshmi, G.S.; Harivardhagini, S.; Ahmad, M. Fuel Cell-Based Hybrid Electric Vehicles: An Integrated Review of Current Status, Key Challenges, Recommended Policies, and Future Prospects. Green Energy Intell. Transp. 2023, 2, 100121. [Google Scholar] [CrossRef]
- Selmi, T.; Khadhraoui, A.; Cherif, A. Fuel Cell–Based Electric Vehicles Technologies and Challenges. Environ. Sci. Pollut. Res. 2022, 29, 78121–78131. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, H.; Wang, F.; Wang, W.; Lin, X. Longevity-Conscious Energy Management Strategy of Fuel Cell Hybrid Electric Vehicle Based on Deep Reinforcement Learning. Energy 2022, 238, 121593. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Guan, C.; Gao, H. Optimization of Sizing and Frequency Control in Battery/Supercapacitor Hybrid Energy Storage System for Fuel Cell Ship. Energy 2020, 197, 117285. [Google Scholar] [CrossRef]
- KoteswaraRao, K.V.; Srinivasulu, G.N.; Ramesh, J.; Velisala, V. Optimal Component Sizing and Performance of Fuel Cell—Battery Powered Vehicle over World Harmonized and New European Driving Cycles. Energy Convers. Manag. 2024, 300, 117992. [Google Scholar] [CrossRef]
- Piras, M.; De Bellis, V.; Malfi, E.; Desantes, J.M.; Novella, R.; Lopez-juarez, M. International Journal of Hydrogen Energy Incorporating Speed Forecasting and SOC Planning into Predictive ECMS for Heavy-Duty Fuel Cell Vehicles. Int. J. Hydrogen Energy 2024, 55, 1405–1421. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Ramasamy, P.; Maharajan, M.P.; Padmamalini, N.; Sivakumar, J. The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application. Sustainability 2024, 16, 872. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Xu, S. Temperature Sensitivity Characteristics of PEM Fuel Cell and Output Performance Improvement Based on Optimal Active Temperature Control. Int. J. Heat Mass Transf. 2023, 206, 123966. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, X.; Xu, S.; Sun, C. Deep Learning-Based State-of-Health Estimation of Proton-Exchange Membrane Fuel Cells under Dynamic. Sensors 2024, 24, 4451. [Google Scholar] [CrossRef]
- Tang, X.; Qin, X.; Wei, K.; Xu, S. A Novel Online Degradation Model for Proton Exchange Membrane Fuel Cell Based on Online Transfer Learning. Int. J. Hydrogen Energy 2022, 48, 13617–13632. [Google Scholar] [CrossRef]
- Tang, X.; Shi, L.; Zhang, Y.; Li, B.; Xu, S.; Song, Z. Degradation Adaptive Energy Management Strategy for FCHEV Based on the Rule-DDPG Method: Tailored to the Current SOH of the Powertrain. IEEE Trans. Transp. Electrif. 2024, 1. [Google Scholar] [CrossRef]
- Peng, X.; Chen, H. Energy Management Optimization of Fuel Cell Hybrid Ship Based on Particle Swarm Optimization Algorithm. Energies 2023, 16, 1373. [Google Scholar] [CrossRef]
- Álvarez, R.; Corbera, S. Hydrogen Fuel Cell as Range Extender in Electric Vehicle Powertrains: Fuel Optimization Strategies. Nanostruct. Mater. Next-Gener. Energy Storage Convers. 2018, 1, 359–383. [Google Scholar]
- Zaky, A.A.; Ghoniem, R.M.; Selim, F. Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm. Sustainability 2023, 15, 10590. [Google Scholar] [CrossRef]
- Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel Meta-Heuristic Bald Eagle Search Optimisation. Artif. Intell. Rev. 2020, 53, 2237–2264. [Google Scholar] [CrossRef]
- Alsaidan, I.; Shaheen, M.A.M.; Hasanien, H.M.; Alaraj, M.; Alnafisah, A.S. A PEMFC Model Optimization Using the Enhanced Bald Eagle Algorithm. Ain Shams Eng. J. 2022, 13, 101749. [Google Scholar] [CrossRef]
- Yang, B.; Li, D.; Zeng, C.; Han, Y.; Li, J. Bald Eagle Search Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell. Front. Energy Res. 2022, 10, 885461. [Google Scholar] [CrossRef]
- Ferahtia, S.; Rezk, H.; Ghoniem, R.M.; Fathy, A.; Alkanhel, R.; Ghonem, M.M. Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle. Sustainability 2023, 15, 3267. [Google Scholar] [CrossRef]
- El Marghichi, M.; Loulijat, A.; Dangoury, S.; Chojaa, H.; Abdelaziz, A.Y.; Mossa, M.A.; Hong, J.; Geem, Z.W. Enhancing Battery Capacity Estimation Accuracy Using the Bald Eagle Search Algorithm. Energy Rep. 2023, 10, 2710–2724. [Google Scholar] [CrossRef]
- Fathy, A.; Ferahtia, S.; Rezk, H.; Yousri, D.; Abdelkareem, M.A.; Olabi, A.G. Robust Parameter Estimation Approach of Lithium-Ion Batteries Employing Bald Eagle Search Algorithm. Int. J. Energy Res. 2022, 46, 10564–10575. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Devabalaji, K.R.; Thanikanti, S.B.; Pamshetti, V.B.; Nwulu, N.I. Integration of Electric Vehicle Charging Stations and DSTATCOM in Practical Indian Distribution Systems Using Bald Eagle Search Algorithm. IEEE Access 2023, 11, 55149–55168. [Google Scholar] [CrossRef]
- Ghadbane, H.E.; Barkat, S.; Houari, A.; Djerioui, A.; Rezk, H. Optimal Adaptive Fractional Order Integral Sliding Mode Controller-Energy Management Strategy for Electric Vehicles Based on Bald Eagle Search Algorithm. Int. J. Energy Res. 2024, 2024, 7844084. [Google Scholar] [CrossRef]
- Fathy, A. Bald Eagle Search Optimizer-Based Energy Management Strategy for Microgrid with Renewable Sources and Electric Vehicles. Appl. Energy 2023, 334, 120688. [Google Scholar] [CrossRef]
- Youssef, H.; Kamel, S.; Hassan, M.H.; Nasrat, L.; Jurado, F.; Jurado, F. An Improved Bald Eagle Search Optimization Algorithm for Optimal Home Energy Management Systems. Soft Comput. 2024, 28, 1367–1390. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Ferahtia, S.; Taha, E. Accurate Parameter Estimation Methodology Applied to Model Proton Exchange Membrane Fuel Cell. Energy 2022, 255, 124454. [Google Scholar] [CrossRef]
- Abaza, A.; Saeed, A.; Bayoumi, A. Optimal Parameter Estimation of Solid Oxide Fuel Cells Model Using Bald Eagle Search Optimizer. Int. J. Energy Res. 2022, 46, 13657–13669. [Google Scholar] [CrossRef]
- Rezk, H.; Ferahtia, S.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Robust Parameter Identification Strategy of Solid Oxide Fuel Cells Using Bald Eagle Search Optimization Algorithm. Int. J. Energy Res. 2022, 46, 10535–10552. [Google Scholar] [CrossRef]
- Erdinc, O.; Vural, B.; Uzunoglu, M. A Wavelet-Fuzzy Logic Based Energy Management Strategy for a Fuel Cell/Battery/Ultra-Capacitor Hybrid Vehicular Power System. J. Power Sources 2009, 194, 369–380. [Google Scholar] [CrossRef]
- Omran, A.; Lucchesi, A.; Smith, D.; Alaswad, A.; Amiri, A.; Wilberforce, T.; Sodr, R.; Olabi, A.G. Mathematical Model of a Proton-Exchange Membrane (PEM) Fuel Cell. Int. J. Thermofluids 2021, 11, 100110. [Google Scholar] [CrossRef]
- Rowe, A.; Li, X. Mathematical Modeling of Proton Exchange Membrane Fuel Cells. J. Power Sources 2001, 102, 82–96. [Google Scholar] [CrossRef]
- Şefkat, G.; Özel, M.A. PEM Yakıt Pilinin Simulink Modeli Ve Analizi. Uludağ Univ. J. Fac. Eng. 2018, 23, 351–366. [Google Scholar] [CrossRef]
- Şefkat, G.; Ozel, M.A. Experimental and Numerical Study of Energy and Thermal Management System for a Hydrogen Fuel Cell-Battery Hybrid Electric Vehicle. Energy 2022, 238, 121794. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khalid, M.; Kamal, K.; Abdul, T.; Ratlamwala, H.; Hussain, G.; Alkahtani, M. Modeling and Simulation of a Proton Exchange Membrane Fuel Cell Alongside a Waste Heat Recovery System Based on the Organic Rankine Cycle in MATLAB/SIMULINK Environment. Sustainability 2021, 13, 1218. [Google Scholar] [CrossRef]
- Musio, F.; Tacchi, F.; Omati, L.; Gallo, P.; Dotelli, G.; Limonta, S.; Brivio, D.; Grassini, P. PEMFC System Simulation in MATLAB-Simulink Environment. Int. J. Hydrogen Energy 2011, 36, 8045–8052. [Google Scholar] [CrossRef]
- Poggi-varaldo, H.M.; Solorza-feria, O. Tafel Equation Based Model for the Performance of a Microbial Fuel Cell. Int. J. Hydrogen Energy 2015, 1, 17421–17432. [Google Scholar] [CrossRef]
- Mitra, U.; Arya, A.; Gupta, S. A Comprehensive and Comparative Review on Parameter Estimation Methods for Modelling Proton Exchange Membrane Fuel Cell. Fuel 2023, 335, 127080. [Google Scholar] [CrossRef]
- The International Association of Public Transport SORT & E-SORT Brochures. Available online: https://www.uitp.org/publications/uitp-sort-e-sort-brochures/ (accessed on 18 August 2024).
- The International Association of Public Transport UITP. Available online: https://www.uitp.org/ (accessed on 18 August 2024).
- Kankılıç, S.; Karpat, E. Optimization of Multilayer Absorbers Using the Bald Eagle Optimization Algorithm. Appl. Sci. 2023, 13, 301. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Gross vehicle weight | 18,000–20,000 kg |
Vehicle length | 10–14 m |
Vehicle front area | 7–8 m2 |
Drag coefficient | 0.6–0.8 |
Tire radius | 0.4–0.5 m |
Transmission ratio | 20–23 |
Maximum motor power | 200–300 kW |
Maximum motor torque | 800–1000 Nm |
Motor type | In-wheel hub PMSM |
Battery capacity | 25–30 kWh |
Fuel cell type | Proton Exchange Membrane |
Fuel cell maximum power | 70 kW |
Hydrogen tank capacity | 1500–1700 L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savran, E.; Karpat, E.; Karpat, F. Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm. Appl. Sci. 2024, 14, 7744. https://doi.org/10.3390/app14177744
Savran E, Karpat E, Karpat F. Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm. Applied Sciences. 2024; 14(17):7744. https://doi.org/10.3390/app14177744
Chicago/Turabian StyleSavran, Efe, Esin Karpat, and Fatih Karpat. 2024. "Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm" Applied Sciences 14, no. 17: 7744. https://doi.org/10.3390/app14177744
APA StyleSavran, E., Karpat, E., & Karpat, F. (2024). Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm. Applied Sciences, 14(17), 7744. https://doi.org/10.3390/app14177744