Advances in Analytical Methods for Cultural Heritage
Funding
Conflicts of Interest
References
- Noble, P.; Verslype, I. The Use of X-radiographs in the Study of Paintings. Available online: https://countingvermeer.rkdstudies.nl/2-the-use-of-x-radiographs-in-the-study-of-paintings/ (accessed on 29 July 2024).
- Alfeld, M.; Janssens, A.; Dik, J.; de Nolf, W.; van der Snickt, G. Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J. Anal. At. Spectrom. 2011, 26, 899–909. [Google Scholar] [CrossRef]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Liu, G.L.; Kazarian, S.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst 2022, 147, 1777–1797. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, M.; Alberti, R.; Parsani, T.; Dicorato, C.; Tirelli, P.; Gironda, M.; Tocchio, A.; Frizzi, T. IRIS: A novel integrated instrument for co-registered MA-XRF mapping and VNIR-SWIR hyperspectral imaging. X-Ray Spectrom. 2023. early view. [Google Scholar] [CrossRef]
- Moreau, R.; Calligaro, T.; Pichon, L.; Moignard, B.; Hermon, S.; Reiche, I. A multimodal scanner coupling XRF, UV–Vis–NIR photoluminescence and Vis-NIR-SWIR reflectance imaging spectroscopy for cultural heritage studies. X-Ray Spectrom. 2024, 53, 271–281. [Google Scholar] [CrossRef]
- Geddes da Filicaia, E.; Evershed, R.P.; Peggie, D.A. Review of recent advances on the use of mass spectrometry techniques for the study of organic materials in painted artworks. Anal. Chim. Acta 2023, 1246, 340575. [Google Scholar] [CrossRef]
- Delaney, J.K.; Dooley, K.A. Visible and infrared reflectance imaging spectroscopy of paintings and works on paper. In Analytical Chemistry for the Study of Paintings and the Detection of Forgeries; Colombini, M.P., Degano, I., Nevin, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 115–132. [Google Scholar]
- Newsome, G.A.; Martin, K.M. Non-proximate Sampling and photoionization for damage-free mass spectrometric analysis of intact native American baskets. Anal. Chem. 2023, 95, 10695–10702. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.H.; Shrestha, B.; Morris, H.R.; Bier, M.E.; Whitmore, P.M.; Vertes, A. Minimally invasive monitoring of cellulose degradation by desorption electrospray ionization and laser ablation electrospray ionization mass spectrometry. Analyst 2010, 135, 2434–2444. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, C.M. Monitoring for Gaseous Pollutants in Museum Environments; Getty Publications: Los Angeles, CA, USA, 2006. [Google Scholar]
- Luther, W.; Baloian, N.; Biella, D.; Sacher, D. Digital twins and enabling technologies in museums and cultural heritage: An overview. Sensors 2023, 23, 1583. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Rizzo, A.; Basso, E.; Angelin, E.M.; de Sá, S.F.; Cucci, C.; Picollo, M. Portable spectroscopy for cultural heritage: Applications and practical challenges. In Portable Spectroscopy and Spectrometry Volume 2: X-Ray, NMR and MS Instrumentation and Applications; Kammrath, B., Leary, P., Crocombe, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 501–524. [Google Scholar]
- Blumich, B.; Casanova, F.; Perlo, J.; Presciutti, F.; Anselmi, C.; Doherty, B. Noninvasive testing of art and cultural heritage by mobile NMR. Acc. Chem. Res. 2010, 43, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, P.M.; Pan, X.; Bailie, C. Predicting the fading of objects: Identification of fugitive colorants through direct nondestructive lightfastness measurements. J. Am. Inst. Conserv. 1999, 38, 395–409. [Google Scholar] [CrossRef]
- U.S. Congress, Office of Technology Assessment. Book Preservation Technologies, OTA0-375; U.S. Government Printing Office: Washington, DC, USA, 1988. [Google Scholar]
- Waters, D.J. From Microfilm to Digital Imagery; Commission on Preservation and Access: Washington, DC, USA, 1991. [Google Scholar]
- Ormsby, B.; Keefe, M.; Phenix, A.; von Aderkas, E.; Learner, T.; Tucker, C.; Kozak, C. Mineral spirits-based microemulsions: A novel cleaning system for painted surfaces. J. Am. Inst. Conserv. 2016, 55, 12–31. [Google Scholar] [CrossRef]
- Janssens, K.; Cotte, M. Using synchrotron radiation for characterization of cultural heritage materials. In Synchrotron Light Sources and Free-Electron Lasers; Jaeschke, E., Khan, S., Schneider, J., Hastings, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 2457–2483. [Google Scholar]
- Broers, F.T.; Verslype, I.; Bossers, K.W.; Vanmeert, F.; Gonzalez, V.; Garrevoet, J.; Van Loon, A.; Van Duijn, E.; Krekeler, A.; De Keyser, N.; et al. Correlated X-ray fluorescence and ptychographic nano-tomography on Rembrandt’s The Night Watch reveals unknown lead “layer”. Sci. Adv. 2023, 9, eadj9394. [Google Scholar] [CrossRef] [PubMed]
- De Silva, M.; Henderson, J. Sustainability in conservation practice. J. Inst. Conserv. 2011, 34, 5–15. [Google Scholar] [CrossRef]
- Vermeulen, M.; McGeachy, A.; Xu, B.; Chopp, H.; Katsaggelos, A.; Meyers, R.; Alfed, M.; Walton, M. XRFast a new software package for processing of MA-XRF datasets using machine learning. J. Anal. At. Spectrom. 2022, 37, 2130–2143. [Google Scholar] [CrossRef]
- Parker, C.S.; Parsons, S.; Bandy, J.; Chapman, C.; Coppens, F.; Seales, W.B. From invisibility to readability: Recovering the ink of Herculaneum. PLoS ONE 2019, 14, e0215775. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, M.; Croonenborghs, T.; Declercq, P.Y.; Drougkas, A.; Verstrynge, E.; Hocquet, F.P.; Hayen, R.; Van Balen, K. Advanced processing of remotely sensed big data for cultural heritage conservation. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July—2 August 2019; pp. 5816–5819. [Google Scholar] [CrossRef]
- Fontanella, F.; Colace, F.; Molinara, M.; Di Freca, A.S.; Stanco, F. Pattern recognition and artificial intelligence techniques for cultural heritage. Pattern Recognit. Lett. 2020, 138, 23–29. [Google Scholar] [CrossRef]
- Chelazzi, D.; Baglioni, P. From nanoparticles to gels: A breakthrough in art conservation science. Langmuir 2023, 39, 10744–10755. [Google Scholar] [CrossRef] [PubMed]
- Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In situ noninvasive study of artworks: The MOLAB multitechnique approach. Acc. Chem. Res. 2010, 43, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Basso, E. The Network Initiative for Conservation Science (NICS): A model of collaboration and resource sharing among neighbor museums. Herit. Sci. 2021, 9, 92. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzi, F.; Stephens, C.H. Advances in Analytical Methods for Cultural Heritage. Appl. Sci. 2024, 14, 7587. https://doi.org/10.3390/app14177587
Pozzi F, Stephens CH. Advances in Analytical Methods for Cultural Heritage. Applied Sciences. 2024; 14(17):7587. https://doi.org/10.3390/app14177587
Chicago/Turabian StylePozzi, Federica, and Catherine H. Stephens. 2024. "Advances in Analytical Methods for Cultural Heritage" Applied Sciences 14, no. 17: 7587. https://doi.org/10.3390/app14177587
APA StylePozzi, F., & Stephens, C. H. (2024). Advances in Analytical Methods for Cultural Heritage. Applied Sciences, 14(17), 7587. https://doi.org/10.3390/app14177587