Estimation of Motion Capabilities of Mobile Platforms with Three Omni Wheels Based on Discrete Bidirectionality Compliance Analysis
Abstract
:1. Introduction
New Contribution
2. Materials and Methods
2.1. Kinematics of an Omnidirectional Mobile Platform
2.2. Set of Mobile Platform Configurations Assessed
3. Procedure for Omnidirectionality Analysis
3.1. Bidirectionality Error
3.2. Omnidirectionality Analysis
4. Results
4.1. Prediction of the Omnidirectional and Translation Capabilities
4.2. Validation of the Omnidirectionality and Translation Capabilities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dickerson, S.L.; Lapin, B.D. Control of an Omni-Directional Robotic Vehicle with Mecanum Wheels. In Proceedings of the NTC’91—National Telesystems Conference Proceedings, Atlanta, GA, USA, 26–27 March 1991; pp. 323–328. [Google Scholar]
- Pin, F.G.; Killough, S.M. A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots. IEEE Trans. Robot. Autom. 1994, 10, 480–489. [Google Scholar] [CrossRef]
- Purwin, O.; D’Andrea, R. Trajectory Generation and Control for Four Wheeled Omnidirectional Vehicles. Robot. Auton. Syst. 2006, 54, 13–22. [Google Scholar] [CrossRef]
- Doroftei, I.; Grosu, V.; Spinu, V. Omnidirectional Mobile Robot—Design and Implementation. In Bioinspiration and Robotics Walking and Climbing Robots; IntechOpen: London, UK, 2007; ISBN 978-3-902613-15-8. [Google Scholar]
- Indiveri, G. Swedish Wheeled Omnidirectional Mobile Robots: Kinematics Analysis and Control. IEEE Trans. Robot. 2009, 25, 164–171. [Google Scholar] [CrossRef]
- Ilon, B.E. Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base. U.S. Patent No. 3,876,255, 8 April 1975. [Google Scholar]
- Diegel, O.; Badve, A.; Bright, G.; Potgieter, J.; Tlale, S. Improved Mecanum Wheel Design for Omni-Directional Robots. In Proceedings of the Australian Conference on Robotics and Automation, Auckland, Australia, 27–29 November 2002. [Google Scholar]
- Grabowfecki, J. Vehicle-Wheei. U.S. Patent US1305535A, 3 June 1919. [Google Scholar]
- Blumrich, J. Omnidirectional Wheel. U.S. Patent US3789947A, 5 February 1974. [Google Scholar]
- Moreno, J.; Clotet, E.; Lupiañez, R.; Tresanchez, M.; Martínez, D.; Pallejà, T.; Casanovas, J.; Palacín, J. Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR). Sensors 2016, 16, 1658. [Google Scholar] [CrossRef] [PubMed]
- Eirale, A.; Martini, M.; Tagliavini, L.; Gandini, D.; Chiaberge, M.; Quaglia, G. Marvin: An Innovative Omni-Directional Robotic Assistant for Domestic Environments. Sensors 2022, 22, 5261. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, H.; Cheng, T.; Ni, X.; Wu, C.; Zong, H.; Lu, H.; Lu, Z.; Shen, Y. An Omnidirectional and Movable Palletizing Robot Based on Computer Vision Positing. In Proceedings of the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Shenyang, China, 24–27 August 2018. [Google Scholar]
- Samani, H.A.; Abdollahi, A.; Ostadi, H.; Rad, S.Z. Design and Development of a Comprehensive Omni Directional Soccer Player Robot. Int. J. Adv. Robot. Syst. 2004, 1, 191–200. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Chen, H.B.; Du, Y.P.; Wei, L. Design and Development of an Omni-Directional Mobile Robot for Logistics. Appl. Mech. Mater. 2014, 602–605, 1006–1010. [Google Scholar] [CrossRef]
- Levratti, A.; Riggio, G.; Fantuzzi, C.; De Vuono, A.; Secchi, C. TIREBOT: A Collaborative Robot for the Tire Workshop. Robot. Comput.-Integr. Manuf. 2019, 57, 129–137. [Google Scholar] [CrossRef]
- Racz, S.-G.; Crenganis, M.; Barsan, A.; Adrian, M. Omnidirectional Autonomous Mobile Robot with Mecanum Wheel. In Proceedings of the International Student Innovation and Scientific Research Exhibition, Sibiu, Romania, 1 April 2019; pp. 11–13. [Google Scholar]
- Li, Y.; Dai, S.; Zhao, L.; Yan, X.; Shi, Y. Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot. Symmetry 2019, 11, 1268. [Google Scholar] [CrossRef]
- Almasri, E.; Uyguroğlu, M.K. Modeling and Trajectory Planning Optimization for the Symmetrical Multiwheeled Omnidirectional Mobile Robot. Symmetry 2021, 13, 1033. [Google Scholar] [CrossRef]
- Mohanraj, A.P.; Elango, A.; Reddy, M.C. Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels. Sci. World J. 2016, 2016, 7612945. [Google Scholar] [CrossRef] [PubMed]
- Palacín, J.; Rubies, E.; Clotet, E. The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes. Designs 2022, 6, 66. [Google Scholar] [CrossRef]
- Guo, Y. A New Kind of Wheel-Model All-Directional Moving Mechanism. J. Harbin Inst. Technol. 2001, 33, 854–857. [Google Scholar]
- Mohd Salih, J.E.; Rizon, M.; Yaacob, S.; Adom, A.; Mamat, M. Designing Omni-Directional Mobile Robot with Mecanum Wheel. Am. J. Appl. Sci. 2006, 3, 1831–1835. [Google Scholar] [CrossRef]
- Rey, R.; Cobano, J.A.; Corzetto, M.; Merino, L.; Alvito, P.; Caballero, F. A Novel Robot Co-Worker System for Paint Factories without the Need of Existing Robotic Infrastructure. Robot. Comput.-Integr. Manuf. 2021, 70, 102122. [Google Scholar] [CrossRef]
- Hijikata, M.; Miyagusuku, R.; Ozaki, K. Omni Wheel Arrangement Evaluation Method Using Velocity Moments. Appl. Sci. 2023, 13, 1584. [Google Scholar] [CrossRef]
- Moore, K.L.; Flann, N.S. A Six-Wheeled Omnidirectional Autonomous Mobile Robot. IEEE Control Syst. Mag. 2000, 20, 53–66. [Google Scholar]
- Moore, K.L.; Davidson, M.; Bahl, V.; Rich, S.; Jirgal, S. Modelling and Control of a Six-Wheeled Autonomous Robot. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 28–30 June 2000; Volume 3, pp. 1483–1490. [Google Scholar]
- Huang, Y.; Meng, R.; Yu, J.; Zhao, Z.; Zhang, X. Practical Obstacle-Overcoming Robot with a Heterogeneous Sensing System: Design and Experiments. Machines 2022, 10, 289. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, Y.N.; Zhang, J.; Yan, N.M.; Zeng, W. Research on Simulation of Motion Compensation for 8 × 8 Omnidirectional Platform Based on Back Propagation Network. Appl. Mech. Mater. 2013, 299, 44–47. [Google Scholar] [CrossRef]
- Prados Sesmero, C.; Buonocore, L.R.; Di Castro, M. Omnidirectional Robotic Platform for Surveillance of Particle Accelerator Environments with Limited Space Areas. Appl. Sci. 2021, 11, 6631. [Google Scholar] [CrossRef]
- Cheah, W.; Groves, K.; Martin, H.; Peel, H.; Watson, S.; Marjanovic, O.; Lennox, B. MIRRAX: A Reconfigurable Robot for Limited Access Environments. IEEE Trans. Robot. 2023, 39, 1341–1352. [Google Scholar] [CrossRef]
- Tavakoli, M.; Viegas, C.; Marques, L.; Pires, J.N.; de Almeida, A.T. OmniClimbers: Omni-Directional Magnetic Wheeled Climbing Robots for Inspection of Ferromagnetic Structures. Robot. Auton. Syst. 2013, 61, 997–1007. [Google Scholar] [CrossRef]
- Orozco-Magdaleno, E.C.; Gómez-Bravo, F.; Castillo-Castañeda, E.; Carbone, G. Evaluation of Locomotion Performances for a Mecanum-Wheeled Hybrid Hexapod Robot. IEEE/ASME Trans. Mechatron. 2021, 26, 1657–1667. [Google Scholar] [CrossRef]
- Watson, M.T.; Gladwin, D.T.; Prescott, T.J.; Conran, S.O. Dual-Mode Model Predictive Control of an Omnidirectional Wheeled Inverted Pendulum. IEEE/ASME Trans. Mechatron. 2019, 24, 2964–2975. [Google Scholar] [CrossRef]
- Mahboubi, S.; Fakhrabadi, M.M.S.; Ghanbari, A. Design and Implementation of a Novel Hybrid Quadruped Spherical Mobile Robot. Robot. Auton. Syst. 2013, 61, 184–194. [Google Scholar] [CrossRef]
- Tang, J.; Yao, S.; Liu, R.; Yao, Y. A Schatz-Based Omnidirectional Mobile Mechanism with Oloid-like Paddlewheels. Mech. Mach. Theory 2023, 189, 105434. [Google Scholar] [CrossRef]
- Taheri, H.; Zhao, C.X. Omnidirectional Mobile Robots, Mechanisms and Navigation Approaches. Mech. Mach. Theory 2020, 153, 103958. [Google Scholar] [CrossRef]
- Barreto, S.J.C.L.; Conceição, A.G.S.; Dórea, C.E.T.; Martinez, L.; de Pieri, E.R. Design and Implementation of Model-Predictive Control With Friction Compensation on an Omnidirectional Mobile Robot. IEEE/ASME Trans. Mechatron. 2014, 19, 467–476. [Google Scholar] [CrossRef]
- Manzl, P.; Sereinig, M.; Gerstmayr, J. A Mecanum Wheel Model Based on Orthotropic Friction with Experimental Validation. Mech. Mach. Theory 2024, 193, 105548. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhang, J.; Su, Q.; Gao, J. Research on Motion Characteristic of Omnidirectional Robot Based on Mecanum Wheel. In Proceedings of the 2010 International Conference on Digital Manufacturing & Automation, Changcha, China, 18–20 December 2010. [Google Scholar]
- Tagliavini, L.; Colucci, G.; Botta, A.; Cavallone, P.; Baglieri, L.; Quaglia, G. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies. J. Intell. Robot. Syst. 2022, 106, 57. [Google Scholar] [CrossRef] [PubMed]
- Hijikata, M.; Miyagusuku, R.; Ozaki, K. Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness. Appl. Sci. 2022, 12, 5798. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, M.; Mohan, S. Behavioural Fault Tolerant Control of an Omni Directional Mobile Robot with Four Mecanum Wheels. Def. Sci. J. 2019, 69, 353–360. [Google Scholar] [CrossRef]
- Leng, C.; Cao, Q. Velocity Analysis of Omnidirectional Mobile Robot and System Implementation. In Proceedings of the 2006 IEEE International Conference on Automation Science and Engineering, Shanghai, China, 8 October 2006; pp. 81–86. [Google Scholar]
- He, C.; Wu, D.; Chen, K.; Liu, F.; Fan, N. Analysis of the Mecanum Wheel Arrangement of an Omnidirectional Vehicle. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 5329–5340. [Google Scholar] [CrossRef]
- Mamaev, I.S.; Kilin, A.A.; Karavaev, Y.L.; Shestakov, V.A. Criteria of Motion Without Slipping for an Omnidirectional Mobile Robot. Rus. J. Nonlin. Dyn. 2021, 17, 527–546. [Google Scholar] [CrossRef]
- Li, Z.; Long, J.; Zhang, X.; Gao, C.; Jiang, S.; Zhu, Z.; Jia, Z. Experimental Characterization and Comparison of Three Typical Omnidirectional Mobile Robots. In Proceedings of the 2023 8th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2023, Sanya, China, 8–10 July 2023; pp. 1162–1168. [Google Scholar]
- Lynch, K.M.; Park, F.C. Modern Robotics: Mechanics, Planning, and Control; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-15630-2. [Google Scholar]
- Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycki, R. Comparison with State-of-the-Art: Traps and Pitfalls. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; IEEE: New York, NY, USA, 2021; pp. 863–870. [Google Scholar]
- Clotet, E.; Rubies, E.; Bitriá, R.; Palacín, J. Simulator for Omnidirectional Robots Equipped with 2D and 3D LiDAR Sensors. In Proceedings of the 2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON), Online, 8–10 December 2023; pp. 1–6. [Google Scholar]
- Siradjuddin, I.; Azhar, G.A.; Wibowo, S.; Ronilaya, F.; Rahmad, C.; Rohadi, E. A General Inverse Kinematic Formulation and Control Schemes for Omnidirectional Robots. Eng. Lett. 2021, 29, 1344–1358. [Google Scholar]
Configuration | Representation | ||||||
---|---|---|---|---|---|---|---|
3A | 60 | 180 | 300 | 0 | 0 | 0 | |
1A-2B | 60 | 180 | 300 | −90 | 0 | −90 | |
1A-2C | 60 | 180 | 300 | 30 | 0 | −30 | |
1A-1B-1C | 60 | 180 | 300 | 0 | −90 | −30 | |
1A-1B-1D | 60 | 180 | 300 | 0 | −90 | 60 | |
3E | 60 | 180 | 300 | 49.37 | 49.37 | 49.37 | |
3B | 60 | 180 | 300 | −90 | −90 | −90 | |
2A-1B | 60 | 180 | 300 | 0 | −90 | 0 | |
1B-2C | 60 | 180 | 300 | 30 | −90 | −30 | |
1B-2D | 60 | 180 | 300 | −60 | −90 | 60 | |
1A-2D | 60 | 180 | 300 | −60 | 0 | 60 |
Configuration | Scale | |||
---|---|---|---|---|
3A 1A-2B 1A-2C 1A-1B-1C 1A-1B-1D 3E |
Configuration | Scale | |||
---|---|---|---|---|
3B | ||||
2A-1B | ||||
1B-2C | ||||
1B-2D | ||||
1A-2D |
Configuration | Scale | ||||
---|---|---|---|---|---|
3A 1A-2B 1A-2C 1A-1B-1C 1A-1B-1D 3E |
Configuration | Scale | ||||
---|---|---|---|---|---|
3B | |||||
2A-1B | |||||
1B-2C | |||||
1B-2D | |||||
1A-2D |
Configuration | Representation | Omnidirectional | Proposed Procedure | ||
---|---|---|---|---|---|
), Full | Y. Li et al. [17] | Omnidirectional | Translation | ||
3A | YES | YES | YES | YES | |
1A-2B | YES | YES | YES | YES | |
1A-2C | YES | YES | YES | YES | |
1A-1B-1C | YES | YES | YES | YES | |
1A-1B-1D | YES | YES | YES | YES | |
3E | YES | YES | YES | YES | |
3B | NO | NO | NO | YES | |
2A-1B | NO | NO | NO | NO | |
1B-2C | NO | NO | NO | NO | |
1B-2D | NO | NO | NO | NO | |
1A-2D | NO | NO | NO | NO |
Experiment | Motion Command | Motion Required | Final Position | |
---|---|---|---|---|
Translation | Rotation | |||
E1 | X | - | ||
E2 | X | - | ||
E3 | X | - | ||
E4 | X | X | ||
E5 | X | X | ||
E6 | - | X |
Platform | Experiment (Type of Motion Required) | Summary of the Simulations | |||||||
---|---|---|---|---|---|---|---|---|---|
E1 (T) | E2 (T) | E3 (T) | E4 (T+R) | E5 (T+R) | E6 (R) | OMD | T | Trajectories | |
3A 1A-2B 1A-2C 1A-1B-1C 1A-1B-1D 3E | OK | OK | OK | OK | OK | OK | YES | YES |
Platform | Experiment (Type of Motion Required) | Summary of the Simulations | |||||||
---|---|---|---|---|---|---|---|---|---|
E1 (T) | E2 (T) | E3 (T) | E4 (T+R) | E5 (T+R) | E6 (R) | OMD | T | Trajectories | |
3B | OK | OK | OK | FAILED | FAILED | FAILED | NO | YES | |
2A-1B | OK | FAILED | FAILED | FAILED | FAILED | FAILED | NO | NO | |
1B-2C | OK | FAILED | FAILED | OK | FAILED | OK | NO | NO | |
1B-2D | OK | FAILED | FAILED | FAILED | FAILED | FAILED | NO | NO | |
1A-2D | FAILED | OK | FAILED | FAILED | OK | OK | NO | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubies, E.; Palacín, J.; Bitriá, R.; Clotet, E. Estimation of Motion Capabilities of Mobile Platforms with Three Omni Wheels Based on Discrete Bidirectionality Compliance Analysis. Appl. Sci. 2024, 14, 7160. https://doi.org/10.3390/app14167160
Rubies E, Palacín J, Bitriá R, Clotet E. Estimation of Motion Capabilities of Mobile Platforms with Three Omni Wheels Based on Discrete Bidirectionality Compliance Analysis. Applied Sciences. 2024; 14(16):7160. https://doi.org/10.3390/app14167160
Chicago/Turabian StyleRubies, Elena, Jordi Palacín, Ricard Bitriá, and Eduard Clotet. 2024. "Estimation of Motion Capabilities of Mobile Platforms with Three Omni Wheels Based on Discrete Bidirectionality Compliance Analysis" Applied Sciences 14, no. 16: 7160. https://doi.org/10.3390/app14167160