Reconfigurable Robotic Exercising Companion
Abstract
:1. Introduction
2. System Overview
Reconfigurable Robot Platform
3. Emotion-Based Feedback per Performance of Exercise
3.1. Perceiving Exercises
3.2. Exercise Correctness Score
3.3. Emotion Generation
Algorithm 1 Emotion derivation |
|
Algorithm 2 Motion pattern, robot speed calculation |
|
4. Experiments and Results
4.1. Experimental Setup
4.2. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikkelsen, K.; Stojanovska, L.; Polenakovic, M.; Bosevski, M.; Apostolopoulos, V. Exercise and mental health. Maturitas 2017, 106, 48–56. [Google Scholar] [CrossRef]
- Amatriain-Fernández, S.; Murillo-Rodríguez, E.S.; Gronwald, T.; Machado, S.; Budde, H. Benefits of physical activity and physical exercise in the time of pandemic. Psychol. Trauma Theory Res. Pract. Policy 2020, 12, S264. [Google Scholar] [CrossRef]
- Lotfi, A.; Langensiepen, C.; Yahaya, S.W. Socially assistive robotics: Robot exercise trainer for older adults. Technologies 2018, 6, 32. [Google Scholar] [CrossRef]
- Menezes, P.; Rocha, R.P. Promotion of active ageing through interactive artificial agents in a smart environment. SN Appl. Sci. 2021, 3, 583. [Google Scholar] [CrossRef]
- Tung, W.F. GEC-HR: Gamification exercise companion for home robot with IoT. In Proceedings of the HCI International 2019-Posters: 21st International Conference, HCII 2019, Orlando, FL, USA, 26–31 July 2019; Proceedings, Part II 21. Springer: Berlin/Heidelberg, Germany, 2019; pp. 141–145. [Google Scholar]
- Shao, M.; Alves, S.F.D.R.; Ismail, O.; Zhang, X.; Nejat, G.; Benhabib, B. You are doing great! only one rep left: An affect-aware social robot for exercising. In Proceedings of the 2019 IEEE international conference on systems, man and cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 3811–3817. [Google Scholar]
- Schneider, S.; Kümmert, F. Exercising with a humanoid companion is more effective than exercising alone. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 495–501. [Google Scholar]
- Schneider, S.; Kummert, F. Comparing robot and human guided personalization: Adaptive exercise robots are perceived as more competent and trustworthy. Int. J. Soc. Robot. 2021, 13, 169–185. [Google Scholar] [CrossRef]
- Schneider, S.; Kummert, F. Motivational effects of acknowledging feedback from a socially assistive robot. In Proceedings of the Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, 1–3 November 2016; Proceedings 8. Springer: Berlin/Heidelberg, Germany, 2016; pp. 870–879. [Google Scholar]
- Martinez-Martin, E.; Cazorla, M. A socially assistive robot for elderly exercise promotion. IEEE Access 2019, 7, 75515–75529. [Google Scholar] [CrossRef]
- Nomura, T.; Kanda, T.; Yamada, S.; Suzuki, T. The effects of assistive walking robots for health care support on older persons: A preliminary field experiment in an elder care facility. Intell. Serv. Robot. 2021, 14, 25–32. [Google Scholar] [CrossRef]
- Fitter, N.T.; Mohan, M.; Kuchenbecker, K.J.; Johnson, M.J. Exercising with Baxter: Preliminary support for assistive social-physical human-robot interaction. J. Neuroeng. Rehabil. 2020, 17, 1–22. [Google Scholar] [CrossRef]
- Mohebbi, A. Human-robot interaction in rehabilitation and assistance: A review. Curr. Robot. Rep. 2020, 1, 131–144. [Google Scholar] [CrossRef]
- Simon, A.; Raju, R.; Amitha, M.; Hashim, M.; Jose, J.; George, R. TOYBOT: An Interactive exercise companion for rehabilitation of sedentary geriatric and obese children. In Proceedings of the 2022 IEEE 6th Conference on Information and Communication Technology (CICT), Gwalior, India, 18–20 November 2022; pp. 1–5. [Google Scholar]
- Casas, J.; Cespedes, N.; Múnera, M.; Cifuentes, C.A. Human-robot interaction for rehabilitation scenarios. In Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–31. [Google Scholar]
- Maroto-Gómez, M.; Carrasco-Martínez, S.; Marqués-Villarroya, S.; Malfaz, M.; Castro-González, A.; Salichs, M.A. Bio-inspired Cognitive Decision-making to Personalize the Interaction and the Selection of Exercises of Social Assistive Robots in Elderly Care. In Proceedings of the 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, 28–31 August 2023; pp. 2380–2386. [Google Scholar] [CrossRef]
- Park, C.; Kim, J.; Kang, J.H. Robot social skills for enhancing social interaction in physical training. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 493–494. [Google Scholar] [CrossRef]
- Samarakoon, S.B.P.; Muthugala, M.V.J.; Elara, M.R. Toward obstacle-specific morphology for a reconfigurable tiling robot. J. Ambient Intell. Humaniz. Comput. 2023, 14, 883–895. [Google Scholar] [CrossRef]
- Alattas, R.J.; Patel, S.; Sobh, T.M. Evolutionary modular robotics: Survey and analysis. J. Intell. Robot. Syst. 2019, 95, 815–828. [Google Scholar] [CrossRef]
- Yim, M.; Shen, W.M.; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.; Chirikjian, G.S. Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 2007, 14, 43–52. [Google Scholar] [CrossRef]
- Wijegunawardana, I.D.; Muthugala, M.A.V.J.; Samarakoon, S.M.B.P.; Hua, O.J.; Padmanabha, S.G.A.; Elara, M.R. Insights from autonomy trials of a self-reconfigurable floor-cleaning robot in a public food court. J. Field Robot. 2024, 41, 811–822. [Google Scholar] [CrossRef]
- Daudelin, J.; Jing, G.; Tosun, T.; Yim, M.; Kress-Gazit, H.; Campbell, M. An integrated system for perception-driven autonomy with modular robots. Sci. Robot. 2018, 3, eaat4983. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Park, S.; Yim, M.; Seo, T. Polygon-based random tree search algorithm for a size-changing robot. IEEE Robot. Autom. Lett. 2021, 7, 8100–8105. [Google Scholar] [CrossRef]
- Salsali, M.; Sheikhhoseini, R.; Sayyadi, P.; Hides, J.A.; Dadfar, M.; Piri, H. Association between physical activity and body posture: A systematic review and meta-analysis. BMC Public Health 2023, 23, 1670. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Zajac, A.; Tufano, J.J. The influence of movement tempo during resistance training on muscular strength and hypertrophy responses: A review. Sport. Med. 2021, 51, 1629–1650. [Google Scholar] [CrossRef]
- Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Jayasekara, A.G.B.P.; Elara, M.R. Adapting approaching proxemics of a service robot based on physical user behavior and user feedback. User Model. User-Adapt. Interact. 2022, 33, 1–26. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Walker, C.L.; Walker, E.A. A First Course in Fuzzy Logic; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ibarra, L.; Webb, C. Advantages of fuzzy control while dealing with complex/unknown model dynamics: A quadcopter example. New Appl. Artif. Intell 2016, 31, 93–121. [Google Scholar]
- Pourabdollah, A.; Wagner, C.; Aladi, J.H.; Garibaldi, J.M. Improved uncertainty capture for nonsingleton fuzzy systems. IEEE Trans. Fuzzy Syst. 2016, 24, 1513–1524. [Google Scholar] [CrossRef]
- Muthugala, M.A.V.J.; Vengadesh, A.; Wu, X.; Elara, M.R.; Iwase, M.; Sun, L.; Hao, J. Expressing attention requirement of a floor cleaning robot through interactive lights. Autom. Constr. 2020, 110, 103015. [Google Scholar] [CrossRef]
- Yan, F.; Iliyasu, A.M.; Hirota, K. Emotion space modelling for social robots. Eng. Appl. Artif. Intell. 2021, 100, 104178. [Google Scholar] [CrossRef]
- Hollinger, G.A.; Georgiev, Y.; Manfredi, A.; Maxwell, B.A.; Pezzementi, Z.A.; Mitchell, B. Design of a Social Mobile Robot Using Emotion-Based Decision Mechanisms. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3093–3098. [Google Scholar] [CrossRef]
- Hoggenmüller, M.; Chen, J.; Hespanhol, L. Emotional Expressions of Non-Humanoid Urban Robots: The Role of Contextual Aspects on Interpretations. In Proceedings of the 9th ACM International Symposium on Pervasive Displays, Manchester, UK, 4–5 June 2020; pp. 87–95. [Google Scholar] [CrossRef]
- Dang, T.H.H.; Hutzler, G.; Hoppenot, P. Mobile robot emotion expression with motion based on MACE-GRACE model. In Proceedings of the 2011 15th International Conference on Advanced Robotics (ICAR), Tallinn, Estonia, 20–23 June 2011; pp. 137–142. [Google Scholar] [CrossRef]
Input Memberships | Deviation D | |||
---|---|---|---|---|
L | M | H | ||
Movement speed S | S | H | L | VL |
G | VH | M | L | |
F | H | L | VL |
Exercise Cycles | Posture Deviation | Cycle Speed | Correctness Score | Average Correctness Score | Emotion | Robot Speed |
---|---|---|---|---|---|---|
1 | 23.12 | 0.43 | 66.98 | 83.57 | Happy | 0.38 |
2 | 13.66 | 0.53 | 83.71 | |||
3 | 12.38 | 0.46 | 100.00 | |||
4 | 13.82 | 0.47 | 98.32 | 90.31 | Happy | 0.49 |
5 | 16.70 | 0.46 | 86.50 | |||
6 | 17.10 | 0.41 | 86.10 | |||
7 | 11.00 | 0.51 | 88.99 | 70.40 | Happy | 0.17 |
8 | 15.10 | 0.38 | 99.13 | |||
9 | 39.83 | 0.59 | 23.08 | |||
10 | 53.76 | 0.63 | 9.01 | 26.15 | Sad | −0.23 |
11 | 33.14 | 0.25 | 45.12 | |||
12 | 36.53 | 0.60 | 24.33 | |||
13 | 53.74 | 0.65 | 8.68 | 8.45 | Sad | −0.51 |
14 | 88.57 | 0.82 | 8.33 | |||
15 | 87.81 | 0.78 | 8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachinthana, W.K.R.; Wijegunawardana, I.D.; Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Elara, M.R. Reconfigurable Robotic Exercising Companion. Appl. Sci. 2024, 14, 7249. https://doi.org/10.3390/app14167249
Sachinthana WKR, Wijegunawardana ID, Samarakoon SMBP, Muthugala MAVJ, Elara MR. Reconfigurable Robotic Exercising Companion. Applied Sciences. 2024; 14(16):7249. https://doi.org/10.3390/app14167249
Chicago/Turabian StyleSachinthana, W. K. R., I. D. Wijegunawardana, S. M. Bhagya P. Samarakoon, M. A. Viraj J. Muthugala, and Mohan Rajesh Elara. 2024. "Reconfigurable Robotic Exercising Companion" Applied Sciences 14, no. 16: 7249. https://doi.org/10.3390/app14167249
APA StyleSachinthana, W. K. R., Wijegunawardana, I. D., Samarakoon, S. M. B. P., Muthugala, M. A. V. J., & Elara, M. R. (2024). Reconfigurable Robotic Exercising Companion. Applied Sciences, 14(16), 7249. https://doi.org/10.3390/app14167249