Mechanical Behavior of Low-Strength Hydraulic Lime Concrete Reinforced with Flexible Fibers under Quasi-Static and Dynamic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mix Design Methodology
2.2. Materials, Manufacturing, and Characterization Methodologies
2.2.1. Raw Materials
- Natural hydraulic lime NHL-3.5, ℓ ( = 2580 kg/m3).
- Local tap water, w ( = 1000 kg/m3).
- Poli-aril-ether type-based superplasticizer, MasterEase 5025 ©, ( = 1058 kg/m3, dry residue = 20%).
- Rounded siliceous fine aggregate from a fluvial source ( = 2 mm, = 0.87 mm, = 0.25 mm, = 2490 kg/m3).
- Crushed limestone coarse aggregate ( = 8 mm, = 5.91 mm, = 4 mm, = 2630 kg/m3).
- Polyvinyl alcohol fiber, MasterFiber 400 ©, f ( = 18 mm, = 0.20 mm, = 90, = 1300 kg/m3, water absorption = 17.5%).
2.2.2. Manufacturing Process
2.2.3. Fresh State Measurements and Quasi-Static Mechanical Characterization
2.2.4. Dynamic Fracture Mechanics Tests
3. Results and Discussion
3.1. Fresh State Characterization
3.2. Quasi-Static Mechanical Characterization
3.3. Mode I Fracture Dynamic Tests
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardant, D.; Brumaud, C.; Perrot, A.; Habert, G. Robust clay binder for earth-based concrete. Cem. Concr. Res. 2023, 172, 107207. [Google Scholar] [CrossRef]
- Keita, E.; Perrot, A. Processing of earth-based materials: Current situation and challenges ahead. RILEM Tech. Lett. 2023, 8, 141–149. [Google Scholar] [CrossRef]
- Abdalqader, A.; Fayyad, F.; Sonebi, M.; Taylor, S. Characterisation of Hemp Shiv and its Effect on the Compressive Strength of Hemp Concrete. In Proceedings of the International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-Based Materials and Concrete Structures, Milos, Greece, 14–16 June 2023; Springer: Cham, Switzerland, 2023; Volume 43, pp. 1–11. [Google Scholar] [CrossRef]
- Asprone, D.; Cadoni, E.; Iucolano, F.; Prota, A. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cem. Concr. Compos. 2014, 53, 52–58. [Google Scholar] [CrossRef]
- Moropoulou, A.; Apostolopoulou, M.; Moundoulas, P.; Aggelakopoulou, E.; Siouta, L.; Bakolas, A.; Douvika, M.; Karakitsios, P.; Asteris, G. The role of restoration mortars in the earthquake protection of the Kaisariani Monastery. In Proceedings of the ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 5–10 June 2016. [Google Scholar]
- Maravelaki-Kalaitzaki, P.; Bakolas, A.; Karatasios, I.; Kilikoglou, V. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res. 2005, 35, 1577–1586. [Google Scholar] [CrossRef]
- Moropoulou, A.; Cakmak, A.; Biscontin, G.; Bakolas, A.; Zendri, E. Advanced Byzantine cement based composites resisting earthquake stresses: The crushed brickylime mortars of Justinian’s Hagia Sophia. Constr. Build. Mater. 2002, 16, 543–552. [Google Scholar] [CrossRef]
- Groot, C.; Veiga, R.; Papayianni, I.; Van Hees, R.; Secco, M.; Álvarez, J.; Faria, P.; Stefanidou, M. RILEM TC 277-LHS report: Lime-based mortars for restoration—A review on long-term durability aspects and experience from practice. Mater. Struct. 2022, 55, 245. [Google Scholar] [CrossRef]
- Badagliacco, D.; Megna, B.; Valenza, A. Induced Modification of Flexural Toughness of Natural Hydraulic Lime Based Mortars by Addition of Giant Reed Fibers. Case Stud. Constr. Mater. 2020, 13, e00425. [Google Scholar] [CrossRef]
- Angiolilli, M.; Gregori, A.; Vailati, M. Lime-Based Mortar Reinforced by Randomly Oriented Short Fibers for the Retrofitting of the Historical Masonry Structure. Materials 2020, 13, 3462. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, M.; Sbardella, F.; Zuena, M.; Tirillò, J.; Sarasini, F. Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restoration. Mater. Des. 2014, 63, 398–406. [Google Scholar] [CrossRef]
- Chan, R.; Bindiganavile, V. Toughness of fibre reinforced hydraulic lime mortar. Part-1: Quasi-static response. Mater. Struct. 2010, 43, 1435–1444. [Google Scholar] [CrossRef]
- Chan, R.; Bindiganavile, V. Toughness of fibre reinforced hydraulic lime mortar. Part-2: Dynamic response. Mater. Struct. 2010, 43, 1445–1455. [Google Scholar] [CrossRef]
- Islam, T.; Chan, R.; Bindiganavile, V. Stress rate sensitivity of stone masonry units bound with fibre reinforced hydraulic lime mortar. Mater. Struct. 2012, 45, 765–776. [Google Scholar] [CrossRef]
- Mercuri, M.; Vailati, M.; Gregori, A. Lime-based mortar reinforced with randomly oriented polyvinyl-alcohol (PVA) fibers for strengthening historical masonry structures. Dev. Built Environ. 2023, 14, 100152. [Google Scholar] [CrossRef]
- David Bienvenido-Huertas, J.D.Á. (Ed.) Building Engineering Facing the Challenges of the 21st Century. Holistic Study from the Perspectives of Materials, Construction, Energy and Sustainability; Springer: Singapore, 2023. [Google Scholar]
- Rosell, J.; Ramírez-Casas, J.; Bedini, S.; Sala, M. Hormigón de cal para la restauración de la Iglesia del Roselló (Lérida). In Proceedings of the Construction Pathology, Rehabilitation Technology and Heritage Management (7th REHABEND Congress), Cáceres, Spain, 15–18 May 2018; Volume 134, pp. 15–18. [Google Scholar]
- Adesina, P.A.; Olutoge, F.A. Structural properties of sustainable concrete developed using rice husk ash and hydrated lime. J. Build. Eng. 2019, 25, 100804. [Google Scholar] [CrossRef]
- Kinnane, O.; Reilly, A.; Grimes, J.; Pavia, S.; Walker, R. Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 2016, 122, 674–682. [Google Scholar] [CrossRef]
- George, S.; Sofi, A. Enhancement of Fly Ash Concrete By Hydrated Lime and Steel Fibres. Mater.-Today-Proc. 2017, 4, 9807–9811. [Google Scholar] [CrossRef]
- Courard, L.; Degee, H.; Darimont, A. Effects of the presence of free lime nodules into concrete: Experimentation and modelling. Cem. Concr. Res. 2014, 64, 73–88. [Google Scholar] [CrossRef]
- Barbhuiya, S.A.; Gbagbo, J.K.; Russell, M.I.; Basheer, P.A.M. Properties of fly ash concrete modified with hydrated lime and silica fume. Constr. Build. Mater. 2009, 23, 3233–3239. [Google Scholar] [CrossRef]
- Grist, E.R.; Paine, K.A.; Heath, A.; Norman, J.; Pinder, H. Structural and durability properties of hydraulic lime-pozzolan concretes. Cem. Concr. Compos. 2015, 62, 212–223. [Google Scholar] [CrossRef]
- Velosa, A.; Cachim, P. Hydraulic-lime based concrete: Strength development using a pozzolanic addition and different curing conditions. Constr. Build. Mater. 2009, 23, 2107–2111. [Google Scholar] [CrossRef]
- Rosell, J.; Bosch, M. Hormigones de cal: Nuevos “viejos” materiales. In Proceedings of the Tradición, Versatilidad e Innovación en la cal: Un Material de Excelencia VI Jornadas FICAL, Pamplona, Spain, 28–30 May 2018. [Google Scholar]
- Malathy, R.; Shanmugam, R.; Dhamotharan, D.; Kamaraj, D.; Prabakaran, M.; Kim, J. Lime based concrete and mortar enhanced with pozzolanic materials—State of art. Constr. Build. Mater. 2023, 390, 131415. [Google Scholar] [CrossRef]
- Garijo, L.; De La Rosa, A.; Ruiz, G. Bridging history and innovation: Advanced mix design techniques for enhanced lime concrete performance. 2024; submitted. [Google Scholar]
- De La Rosa, A.; Ruiz, G.; Moreno, R. Analysis of the rheological properties of natural hydraulic lime-based suspensions for sustainable construction and heritage conservation. Materials 2024, 17, 825. [Google Scholar] [CrossRef] [PubMed]
- De La Rosa, Á.; Poveda, E.; Ruiz, G.; Cifuentes, H. Proportioning of self-compacting steel-fiber reinforced concrete mixes based on target plastic viscosity and compressive strength: Mix-design procedure & experimental validation. Constr. Build. Mater. 2018, 189, 409–419. [Google Scholar] [CrossRef]
- UNE-EN-12350-2:2020; Testing Fresh Concrete—Part 2: Slump Test. CEN–European Committee for Standardization: Brussels, Belgium, 2020.
- UNE-EN-12350-6:2020; Testing Fresh Concrete—Part 6: Density. CEN—European Committee for Standardization: Brussels, Belgium, 2020.
- UNE-EN-12390-13:2022; Testing Hardened Concrete—Part 13: Determination of Secant Modulus of Elasticity in Compression. CEN—European Committee for Standardization: Brussels, Belgium, 2022.
- UNE-EN-12390-3:2020; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. CEN—European Committee for Standardization: Brussels, Belgium, 2020.
- Vandewalle, L.; Nemegeer, D.; Balazs, L.; Barr, B.; Barros, J.; Bartos, P.; Banthia, N.; Criswell, M.; Denarie, E.; Di Prisco, M.; et al. RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete’—Sigma-epsilon-design method—Final Recommendation. Mater. Struct. 2003, 36, 560–567. [Google Scholar] [CrossRef]
- UNE–EN 14651:2007+A1:2008; Test Method for Metallic Fibre Concrete—Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual). CEN—European Committee for Standardization: Brussels, Belgium, 2008.
- Curbach, M.; Eibl, J. Determination of the fracture energy of mortar and concrete by means of the three–point bend tests on notched beams (RILEM Draft Recommendation, TC–50–FMC Fracture Mechanics of Concrete). Mater. Struct. 1985, 18, 287–290. [Google Scholar] [CrossRef]
- Guinea, G.; Planas, J.; Elices, M. Measurement of the fracture energy using three–point bend tests: Part 1—Influence of experimental procedures. Mater. Struct. 1992, 25, 212–218. [Google Scholar] [CrossRef]
- Planas, J.; Elices, M.; Guinea, G. Measurement of the fracture energy using three-point bend tests: Part 2—Influence of bulk energy dissipation. Mater. Struct. 1992, 25, 305–312. [Google Scholar] [CrossRef]
- Elices, M.; Guinea, G.; Planas, J. Measurement of the fracture energy using three-point bend tests: Part 3—Influence of cutting the P–δ tail. Mater. Struct. 1992, 25, 327–334. [Google Scholar] [CrossRef]
- UNE-EN-206:2013+A2; Concrete—Specification, Performance, Production and Conformity. CEN—European Committee for Standardization: Brussels, Belgium, 2021.
- Ruiz, G.; De La Rosa, A.; Poveda, E.; Zanon, R.; Schäfer, M.; Wolf, S. Compressive Behaviour of Steel-Fibre Reinforced Concrete in Annex L of New Eurocode 2. Hormig. Acero 2023, 74, 187–198. [Google Scholar] [CrossRef]
- Ožbolt, J.; Bošnjak, J.; Emiliano Sola, E. Dynamic fracture of concrete compact tension specimen: Experimental and numerical study. Int. J. Solids Struct. 2013, 50, 4270–4278. [Google Scholar] [CrossRef]
- Reinhardt, H.; Weerheijm, J. Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects. Int. J. Fract. 1991, 51, 31–42. [Google Scholar] [CrossRef]
- Ožbolt, J.; Rah, K.; Meštrović, D. Influence of loading rate on concrete cone failure. Int. J. Fract. 2006, 139, 239–252. [Google Scholar] [CrossRef]
- Zhang, X.; Abd Elazim, A.; Ruiz, G.; Yu, R. Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates. Int. J. Impact Eng. 2014, 71, 89–96. [Google Scholar] [CrossRef]
- Zheng, D.; Li, Q. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity. Eng. Fract. Mech. 2004, 71, 2319–2327. [Google Scholar] [CrossRef]
- Banthia, N.; Mindess, S.; Bentur, A.; Pigeon, M. Impact testing of concrete using a drop-weight impact machine. Exp. Mech. 1989, 29, 63–69. [Google Scholar] [CrossRef]
- Suaris, W.; Shah, S. Strain-rate effects in fibre-reinforced concrete subjected to impact and impulsive loading. Composites 1982, 13, 153–159. [Google Scholar] [CrossRef]
- Gopalaratnam, V.; Shah, S.; John, R. A modified instrumented charpy test for cement-based composites. Exp. Mech. 1984, 24, 102–111. [Google Scholar] [CrossRef]
- Yoo, D.; Banthia, N. Impact resistance of fiber-reinforced concrete—A review. Cem. Concr. Compos. 2019, 104, 103389. [Google Scholar] [CrossRef]
- Naaman, A.; Gopalaratnam, V. Impact properties of steel fibre reinforced concrete in bending. Int. J. Cem. Compos. Lightweight Concr. 1983, 5, 225–233. [Google Scholar] [CrossRef]
- Zhang, X.; Ruiz, G.; Abd Elazim, A. Loading rate effect on crack velocities in steel fiber-reinforced concrete. Int. J. Impact Eng. 2015, 76, 60–66. [Google Scholar] [CrossRef]
Raw Materials [kg/m3] | ||||||||
---|---|---|---|---|---|---|---|---|
Name | ℓ | ℓ | ℓ | w | f () | |||
FFLC-0.0 | 0 | 0 | 0 (0%) | |||||
FFLC-0.3 | 0.0017 | 0.571 | 4.0 (0.3%) | |||||
FFLC-0.6 | 0.8 | 0.0033 | 343.2 | 274.6 | 1.143 | 972.0 | 597.0 | 8.0 (0.6%) |
FFLC-0.9 | 0.0033 | 1.143 | 12.0 (0.9%) | |||||
FFLC-1.2 | 0.0065 | 2.215 | 16.0 (1.2%) |
Name | Slump [mm] | Density [kg/m3] |
---|---|---|
FFLC-0.0 | 65 | – |
FFLC-0.3 | 53 | 2132 |
FFLC-0.6 | 65 | 2130 |
FFLC-0.9 | 50 | 2146 |
FFLC-1.2 | 55 | 2164 |
Name | [MPa] (28 Days) | [MPa] (156 Days) | E [GPa] (28 Days) |
---|---|---|---|
FFLC-0.0 | 1.7 (0.2) | 1.5 (0.1) | 7.1 (1.1) |
FFLC-0.3 | 1.8 (0.1) | 1.7 (0.1) | 3.9 (1.2) |
FFLC-0.6 | 2.0 (0.1) | 2.2 (0.1) | 3.2 (0.8) |
FFLC-0.9 | 2.2 (0.1) | 2.2 (0.0) | 4.3 (0.3) |
FFLC-1.2 | 2.5 (0.1) | 2.5 (0.1) | 2.5 (0.3) |
Name | [MPa] | [MPa] | [MPa] | [N m] |
---|---|---|---|---|
FFLC-0.0 | 0.5 (0.2) | 0.2 (0.1) | – | 0.14 (0.01) |
FFLC-0.3 | 0.6 (0.2) | 0.6 (0.2) | 0.2 (0.1) | 0.23 (0.06) |
FFLC-0.6 | 0.6 (0.2) | 0.6 (0.2) | 0.4 (0.2) | 0.38 (0.14) |
FFLC-0.9 | 0.8 (0.1) | 0.8 (0.1) | 0.6 (0.1) | 0.52 (0.07) |
FFLC-1.2 | 0.7 (0.1) | 0.7 (0.1) | 0.5 (0.1) | 0.48 (0.07) |
Name | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [N m] |
---|---|---|---|---|---|---|---|
FFLC-0.0 | 0.7 (0.2) | 0.3 (0.1) | 0.1 (0.0) | – | – | – | 0.21 (0.05) |
FFLC-0.3 | 0.9 (0.1) | 0.3 (0.0) | 0.3 (0.1) | 0.2 (0.1) | 0.1 (0.0) | 0.1 (0.0) | 0.34 (0.06) |
FFLC-0.6 | 0.7 (0.2) | 0.3 (0.0) | 0.4 (0.2) | 0.2 (0.1) | 0.2 (0.1) | 0.1 (0.0) | 0.36 (0.11) |
FFLC-0.9 | 1.1 (0.2) | 0.3 (0.0) | 0.8 (0.2) | 0.5 (0.2) | 0.4 (0.1) | 0.3 (0.1) | 0.59 (0.12) |
FFLC-1.2 | 1.1 (0.1) | 0.3 (0.0) | 1.0 (0.1) | 0.6 (0.1) | 0.4 (0.0) | 0.3 (0.0) | 0.67 (0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Rosa, Á.; Garijo, L.; Masih, V.W.; Ruiz, G. Mechanical Behavior of Low-Strength Hydraulic Lime Concrete Reinforced with Flexible Fibers under Quasi-Static and Dynamic Conditions. Appl. Sci. 2024, 14, 6364. https://doi.org/10.3390/app14146364
De La Rosa Á, Garijo L, Masih VW, Ruiz G. Mechanical Behavior of Low-Strength Hydraulic Lime Concrete Reinforced with Flexible Fibers under Quasi-Static and Dynamic Conditions. Applied Sciences. 2024; 14(14):6364. https://doi.org/10.3390/app14146364
Chicago/Turabian StyleDe La Rosa, Ángel, Lucía Garijo, Vaibhav W. Masih, and Gonzalo Ruiz. 2024. "Mechanical Behavior of Low-Strength Hydraulic Lime Concrete Reinforced with Flexible Fibers under Quasi-Static and Dynamic Conditions" Applied Sciences 14, no. 14: 6364. https://doi.org/10.3390/app14146364
APA StyleDe La Rosa, Á., Garijo, L., Masih, V. W., & Ruiz, G. (2024). Mechanical Behavior of Low-Strength Hydraulic Lime Concrete Reinforced with Flexible Fibers under Quasi-Static and Dynamic Conditions. Applied Sciences, 14(14), 6364. https://doi.org/10.3390/app14146364