Unveiling the Role of Minerals and Trace Elements of Thermal Waters in Skin Health
Abstract
:1. Introduction
2. Minerals, Trace Elements, and Other Compounds of TSW in Skin Health
2.1. Anions
2.1.1. Chloride
2.1.2. Sulfate
2.1.3. Bicarbonate
2.1.4. Fluoride
2.1.5. Phosphate
2.1.6. Carbonate
2.2. Cations
2.2.1. Calcium
2.2.2. Sodium
2.2.3. Magnesium
2.3. Trace Elements
2.3.1. Selenium
2.3.2. Strontium
2.3.3. Manganese
2.3.4. Boron
2.3.5. Zinc
2.4. Other Compounds
2.4.1. Silica (SiO2)
2.4.2. Sulfur and Hydrogen Sulfide
2.4.3. Carbon-Dioxide
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Spas Association. Balneology. Available online: https://europeanspas.eu/balneology/ (accessed on 1 March 2024).
- Cacciapuoti, S.; Luciano, M.; Megna, M.; Annunziata, M.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef] [PubMed]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Dermothermal Cosmetics: Added Value for Thermal Centers. In Proceedings of the 1st International Congress on Water Healing SPA and Quality of Life, Ourense, Spain, 23 September 2015; pp. 1–7. Available online: https://campusauga.uvigo.es/wp-content/uploads/2022/06/Actas_STCV_2015.pdf (accessed on 17 July 2024).
- Huang, A.; Seité, S.; Adar, T. The Use of Balneotherapy in Dermatology. Clin. Dermatol. 2018, 36, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, D. La cure thermale en dermatologie, mode d’emploi. Ann. Dermatol. Vénéréologie 2020, 147, 1S44–1S48. (In French) [Google Scholar] [CrossRef] [PubMed]
- Elitok, B. Possible Effects of Balneotherapeutic Methods in the Treatment of Psoriasis and Eczema. Clin. Gastroenterol. Int. 2018, 1, 1002. [Google Scholar]
- Ravelli, F.N.; Curi, T.; Reis Filho, E.G.D.M.; Correia, P.G.N.; Gonçalves Junior, J.E.; Sant’Anna, B. Águas Termais: Da Balneoterapia à Genômica. Surg. Cosmet. Dermatol. 2021, 12, 141–148. [Google Scholar] [CrossRef]
- Gálvez, I.; Torres-Piles, S.; Ortega-Rincón, E. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int. J. Mol. Sci. 2018, 19, 1687. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Rodrigues, M.; Mourelle, M.L.; Araujo, A.R.T.S. Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations. Cosmetics 2023, 10, 27. [Google Scholar] [CrossRef]
- Tsoureli-Nikita, E.; Menchini, G.; Ghersetich, I.; Hercogova, J. Alternative Treatment of Psoriasis with Balneotherapy Using Leopoldine Spa Water. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Hercogova, J.; Stanghellini, E.; Tsoureli-Nikita, E.; Menchini, G. Inhibitory effects of Leopoldine spa water on inflammation caused by sodium lauryl sulphate. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Lee, J.Y.; Lee, H.J.; Yun, S.T.; Lee, J.T.; Kim, H.J.; Yu, D.S.; Woo, S.Y.; Kim, J.W. Immunomodulatory Effects of Balneotherapy with Hae-Un-Dae Thermal Water on Imiquimod-Induced Psoriasis-Like Murine Model. Ann. Dermatol. 2014, 26, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Leaute-Labreze, C.; Saillour, F.; Chene, G.; Cazenave, C.; Luxey-Bellocq, M.-L.; Sanciaume, C.; Toussaint, J.F.; Taıeb, A. Saline Spa Water or Combined Water and UV-B for Psoriasis vs Conventional UV-B. Arch. Dermatol. 2001, 137, 1035–1039. [Google Scholar] [PubMed]
- Bajgai, J.; Fadriquela, A.; Ara, J.; Begum, R.; Ahmed, M.F.; Kim, C.-S.; Kim, S.-K.; Shim, K.-Y.; Lee, K.-J. Balneotherapeutic Effects of High Mineral Spring Water on the Atopic Dermatitis-like Inflammation in Hairless Mice via Immunomodulation and Redox Balance. BMC Complement. Altern. Med. 2017, 17, 481. [Google Scholar] [CrossRef] [PubMed]
- Mourelle, M.L.; Segura de Yebra, J.; Ayats, J.; Vitale, M.; López Sánchez, A. Potential Benefits of a Cosmetic Ingredient Combining Thermal Spring Water and Diatom Algae Extract. Cosmetics 2024, 11 (Suppl. S1), 62. [Google Scholar] [CrossRef]
- Verdy, C.; Branka, J.-E.; Lefeuvre, L. Modulation of Sodium-Dependent Transporters Expression in Normal Human Keratinocytes by a Sodium Rich Isotonic Thermal Water. J. Cosmet. Dermatol. Sci. Appl. 2012, 2, 254–262. [Google Scholar] [CrossRef]
- Joly, F.; Gardille, C.; Barbieux, E.; Lefeuvre, L. Beneficial Effect of a Thermal Spring Water on the Skin Barrier Recovery after Injury: Evidence for Claudin-6 Expression in Human Skin. J. Cosmet. Dermatol. Sci. Appl. 2012, 2, 273–276. [Google Scholar] [CrossRef]
- Joly, F.; Branka, J.-E.; Lefeuvre, L. Thermal Water from Uriage-Les-Bains Exerts DNA Protection, Induction of Catalase Activity and Claudin-6 Expression on UV Irradiated Human Skin in Addition to Its Own Antioxidant Properties. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 99–106. [Google Scholar] [CrossRef]
- Borrel, V.; Thomas, P.; Catovic, C.; Racine, P.-J.; Konto-Ghiorghi, Y.; Lefeuvre, L.; Duclairoir-Poc, C.; Zouboulis, C.C.; Feuilloley, M.G.J. Acne and Stress: Impact of Catecholamines on Cutibacterium Acnes. Front. Med. 2019, 6, 155. [Google Scholar] [CrossRef] [PubMed]
- Joly, F.; Charveron, M.; Ariès, M.F.; Bidault, J.; Kahhak, L.; Beauvais, F.; Gall, Y. Effect of Avène Spring Water on the Activation of Rat Mast Cell by Substance P or Antigen. Ski. Pharmacol. Physiol. 1998, 11, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Boisnic, S.; Branchet-Gumila, M.C.; Segard, C. Inhibitory Effect of Avene Spring Water on Vasoactive Intestinal Peptide-Induced Inflammation in Surviving Human Skin. Int. J. Tissue React. 2001, 23, 89–95. [Google Scholar]
- Castex-Rizzi, N.; Charveron, M.; Merial-Kieny, C. Inhibition of TNF-Alpha Induced-Adhesion Molecules by Avène Thermal Spring Water in Human Endothelial Cells. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Charveron, M.; Baudoin, C.; Ariès, M.; Gall, Y. In Vitro Evaluation of the Avène Spring Water Effect on Oxygen Radical Generations. In Proceedings of the Poster at World Congress of Dermatology, Paris, France, 1–5 July 2002. [Google Scholar]
- Zöller, N.; Valesky, E.; Hofmann, M.; Bereiter-Hahn, J.; Bernd, A.; Kaufmann, R.; Meissner, M.; Kippenberger, S. Impact of Different Spa Waters on Inflammation Parameters in Human Keratinocyte HaCaT Cells. Ann. Dermatol. 2015, 27, 709. [Google Scholar] [CrossRef] [PubMed]
- Casas, C.; Ribet, V.; Alvarez-Georges, S.; Sibaud, V.; Guerrero, D.; Schmitt, A.; Redoulès, D. Modulation of Interleukin-8 and Staphylococcal Flora by Avène Hydrotherapy in Patients Suffering from Chronic Inflammatory Dermatoses. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Alirezai, M.; Vie, K.; Humbert, P.; Valensi, P.; Cambon, L.; Dupuy, P. A low-salt medical water reduces irritancy of retinoic acid in facial acne. Eur. J. Dermatol. 2000, 10, 370–372. [Google Scholar] [PubMed]
- Goldman, M.P.; Merial-Kieny, C.; Nocera, T.; Mery, S. Comparative Benefit of Two Thermal Spring Waters after Photodynamic Therapy Procedure. J. Cosmet. Dermatol. 2007, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Barolet, D.; Lussier, I.; Mery, S.; Merial-Kieny, C. Beneficial Effects of Spraying Low Mineral Content Thermal Spring Water after Fractional Photothermolysis in Patients with Dermal Melasma. J. Cosmet. Dermatol. 2009, 8, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Mias, C.; Maret, A.; Gontier, E.; Carrasco, C.; Satge, C.; Bessou-Touya, S.; Coubetergues, H.; Bennett-Kennett, R.; Dauskardt, R.H.; Duplan, H. Protective Properties of Avène Thermal Spring Water on Biomechanical, Ultrastructural and Clinical Parameters of Human Skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Gregotti, C.; Veronesi, A.M.; Fioravanti, L.; Nitto, A.; Gioglio, L. Antiinflammatory and antiphlogistic action of bicarbonate-calcium-magnesium thermal water when applied to skin treated with TCA 25%. Clin. Termal. 2009, 56, 157–162. (In Italian) [Google Scholar]
- Chiarini, A.; Dal Pra, I.; Pacchiana, R.; Menapace, L.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) Thermal Water Interferes with the Expression and Secretion of Vascular Endothelial Growth Factor-A Protein Isoforms by Cultured Human Psoriatic Keratinocytes: A Potential Mechanism of Its Anti-Psoriatic Action. Int. J. Mol. Med. 2006, 18, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Dal Pra, I.; Pacchiana, R.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) Thermal Water Interferes with Interleukin-6 Production and Secretion and with Cytokeratin-16 Expression by Cultured Human Psoriatic Keratinocytes: Further Potential Mechanisms of Its Anti-Psoriatic Action. Int. J. Mol. Med. 2006, 18, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Dal Pra, I.; Chiarini, A.; Pacchiana, R.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) Thermal Water Interferes with Tumour Necrosis Factor-α Expression and Interleukin-8 Production and Secretion by Cultured Human Psoriatic Keratinocytes: Yet Other Mechanisms of Its Anti-Psoriatic Action. Int. J. Mol. Med. 2007, 19, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Faga, A. Effects of Thermal Water on Skin Regeneration. Int. J. Mol. Med. 2012, 29, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Saler, M.; Pellegatta, T.; Tresoldi, M.; Bonfanti, V.; Malovini, A.; Faga, A.; Riva, F. Ex Vivo Regenerative Effects of a Spring Water. Biomed. Rep. 2017, 7, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Tabolli, S.; Calza, A.; di Pietro, C.; Sampogna, F.; Abeni, D. Quality of Life of Psoriasis Patients before and after Balneo—Or Balneophototherapy. Yonsei Med. J. 2009, 50, 215. [Google Scholar] [CrossRef] [PubMed]
- Zumiani, G.; Zanoni, M.; Agostini, G. THERAPEUTICAL NOTES-Evaluation of the Efficacy of Comano Thermal Baths Water versus Tap Water in the Treatment of Psoriasis. G. Ital. Dermatol. Venereol. 2000, 135, 259–264. [Google Scholar]
- Geat, D.; Giovannini, M.; Barlocco, E.G.; Pertile, R.; Farina, S.; Pace, M.; Filippeschi, C.; Girolomoni, G.; Cristofolini, M.; Baldo, E. Characteristics Associated with Clinical Response to Comano Thermal Spring Water Balneotherapy in Pediatric Patients with Atopic Dermatitis. Ital. J. Pediatr. 2021, 47, 91. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Postiglione, L.; Mormile, I.; Barrella, V.; de Paulis, A.; Montuori, N.; Rossi, F.W. Water from Nitrodi’s Spring Induces Dermal Fibroblast and Keratinocyte Activation, Thus Promoting Wound Repair in the Skin: An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 5357. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Kang, D.; Wang, Y.; Yu, Y.; Fan, J.; Takashi, E. Carbonate Ion-Enriched Hot Spring Water Promotes Skin Wound Healing in Nude Rats. PLoS ONE 2015, 10, e0117106. [Google Scholar] [CrossRef] [PubMed]
- Soupre, V.; Nguyen, T.; Vasquez, M.P. Utilisation du brumisateur d’eau thermale de La Roche-Posay dans les soins des cicatrices en chirurgie plastique pediatrique. Med. Staff Dermatol. 1995, 29, 13–15. (In French) [Google Scholar]
- Inaka, K.; Kimura, T. Hot Spring Bathing Accelerates Wound Healing and Enhances Heat Retention Effect in Guinea Pigs. J. Vet. Med. Sci. 2022, 84, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Faisal, U.A. Effects of Malaysian Thermal Spring Water as Adjunct Therapy for Mild to Moderate Acne Vulgaris—A Prospective, Randomised, Controlled, Split Face Study. Med. J. Malays. 2024, 79, 157–164. [Google Scholar]
- Proksch, E.; Nissen, H.-P.; Bremgartner, M.; Urquhart, C. Bathing in a Magnesium-Rich Dead Sea Salt Solution Improves Skin Barrier Function, Enhances Skin Hydration, and Reduces Inflammation in Atopic Dry Skin. Int. J. Dermatol. 2005, 44, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Moysan, A.; Morlière, P.; Marquis, I.; Richard, A.; Dubertret, L. Effects of Selenium on UVA-Induced Lipid Peroxidation in Cultured Human Skin Fibroblasts. Ski. Pharmacol. Physiol. 1995, 8, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.J.; Guiraud, P.; Arnaud, J. Antioxidizing Power of a Selenious Mineral Water upon Cutaneous Diploid Human Fibroblasts. Nouv. Dermatol. 1990, 9, 1–7. [Google Scholar]
- Rougier, A.; Richard, A.; Roguet, R. Preventative Effect of a Selenium-Rich Thermal Water against Cell Damage Induced by UV Light. In Proceedings of the Congress of the International Federation Societies of Cosmetic Chemists, Montreux, Switzerland, 18 September 1995. [Google Scholar]
- Celerier, P.; Litoux, P.; Dreno, B.; Richard, A. Modulatory Effects of Selenium and Strontium Salts on Keratinocyte-Derived Inflammatory Cytokines. Arch. Dermatol. Res. 1995, 287, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Rougier, A.; Richard, A. A Selenium-Rich Spring Water Prevents UV and Chemically Induced Inflammation. J. Am. Acad. Dermatol. 2012, 66, AB68. [Google Scholar]
- Martin, R.; Henley, J.; Sarrazin, P.; Seité, S. Skin Microbiome in Patients with Psoriasis Before and After Balneotherapy at the Thermal Care Center of La Roche-Posay. J. Drugs Dermatol. 2015, 14, 1400–1405. [Google Scholar] [PubMed]
- Chebassier, N.; Ouijja, E.H.; Viegas, I.; Dreno, B. Stimulatory Effect of Boron and Manganese Salts on Keratinocyte Migration. Acta Derm. Venereol. 2004, 84, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.O.; Costa, P.C.; Bahia, M.F. Effect of São Pedro Do Sul Thermal Water on Skin Irritation. Int. J. Cosmet. Sci. 2010, 32, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Madeira, A.; Marto, J.; Graça, A.; Pinto, P.; Ribeiro, H. Monfortinho Thermal Water-Based Creams: Effects on Skin Hydration, Psoriasis, and Eczema in Adults. Cosmetics 2019, 6, 56. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Vaz, C.V.; Silva, A.; Correia, S.; Ferreira, R.; Breitenfeld, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R.; Pereira, C.; Cruz, M.T.; et al. In Vitro Evaluation of Potential Benefits of a Silica-Rich Thermal Water (Monfortinho Thermal Water) in Hyperkeratotic Skin Conditions. Int. J. Biometeorol. 2020, 64, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsdóttir, J.H.; Sigurgeirsson, B.; Ólafsson, J.H.; Fridriksson, T.; Agnarsson, B.A.; Davíðsson, S.; Valdimarsson, H.; Lúðvíksson, B.R. The Role of Th17/Tc17 Peripheral Blood T Cells in Psoriasis and Their Positive Therapeutic Response. Scand. J. Immunol. 2013, 78, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsdóttir, J.H.; Ólafsson, J.H.; Agnarsson, B.A.; Lúðvíksson, B.R.; Sigurgeirsson, B. Psoriasis Treatment: Faster and Long-Standing Results after Bathing in Geothermal Seawater. A Randomized Trial of Three UVB Phototherapy Regimens. Photodermatol. Photoimmunol. Photomed. 2014, 30, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, Z.G.; Fouache, A.; Trousson, A.; Wilmo, J.J.; Filaire, E.; Berthon, J.-Y.; Fogli, A.; Sapin, V.; Baron, S.; Lobaccaro, J.-M.A. Modulation of Wound Healing Regulators by Thermal Spring Water from La Bourboule. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Darlenski, R.; Bogdanov, I.; Kacheva, M.; Zheleva, D.; Demerdjieva, Z.; Hristakieva, E.; Fluhr, J.W.; Tsankov, N. Disease Severity, Patient-reported Outcomes and Skin Hydration Improve during Balneotherapy with Hydrocarbonate- and Sulphur-rich Water of Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e196. [Google Scholar] [CrossRef] [PubMed]
- Beylot-Barry, M.; Mahé, E.; Rolland, C.; De La Bretèque, M.A.; Eychenne, C.; Charles, J.; Payen, C.; Machet, L.; Vermorel, C.; Foote, A.; et al. Evaluation of the Benefit of Thermal Spa Therapy in Plaque Psoriasis: The PSOTHERMES Randomized Clinical Trial. Int. J. Biometeorol. 2022, 66, 1247–1256. [Google Scholar] [CrossRef]
- Elimban, V.; Xu, Y.-J.; Bhullar, S.K.; Dhalla, N.S. Modification of Peripheral Blood Flow and Angiogenesis by CO2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia. Biomedicines 2023, 11, 3250. [Google Scholar] [CrossRef] [PubMed]
- Tarnowska, M.; Briançon, S.; Resende De Azevedo, J.; Chevalier, Y.; Arquier, D.; Barratier, C.; Bolzinger, M.-A. The Effect of Vehicle on Skin Absorption of Mg2+ and Ca2+ from Thermal Spring Water. Int. J. Cosmet. Sci. 2020, 42, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Tarnowska, M.; Chevalier, Y.; Briançon, S.; Bordes, C.; De Azevedo, J.R.; Arquier, D.; Pourcher, T.; Bolzinger, M.-A. Skin Absorption of Mixed Halide Anions from Concentrated Aqueous Solutions. Eur. J. Pharm. Sci. 2021, 166, 105985. [Google Scholar] [CrossRef] [PubMed]
- van Kemenade, P.M.; Houben, M.M.; Huyghe, J.M.; Douven, L.F. Do osmotic forces play a role in the uptake of water by human skin? Ski. Res. Technol. 2004, 10, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Costantino, M.; Izzo, V.; Conti, V.; Manzo, V.; Guida, A.; Filippelli, A. Sulphate Mineral Waters: A Medical Resource in Several Disorders. J. Tradit. Complement. Med. 2020, 10, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Panduri, S.; Cervadoro, G.; Dattola, E. Chronic contact eczema and thermal environment: Experience of clinical dermatology University of Pisa. Clin. Ter. 2014, 61, 47e50. [Google Scholar]
- Nicoletti, G.; Corbella, M.; Jaber, O.; Marone, P.; Scevola, D.; Faga, A. Non-Pathogenic Microflora of a Spring Water with Regenerative Properties. Biomed. Rep. 2015, 3, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Saler, M.; Pellegatta, T.; Malovini, A.; Faga, A.; Scalise, A.; Riva, F. Effects of a Spring Water on Human Skin Fibroblast in Vitro Cultures: Preliminary Results. Acta Vulnologica 2016, 14, 196–201. [Google Scholar]
- Nicoletti, G.; Saler, M.; Tresoldi, M.M.; Faga, A.; Benedet, M.; Cristofolini, M. Regenerative Effects of Spring Water-Derived Bacterial Lysates on Human Skin Fibroblast in in Vitro Culture: Preliminary Results. J. Int. Med. Res. 2019, 47, 5777–5786. [Google Scholar] [CrossRef] [PubMed]
- Aversano, A.; Rossi, F.W.; Cammarota, F.; De Paulis, A.; Izzo, P.; De Rosa, M. Nitrodi thermal water downregulates protein S-nitrosylation in RKO cells. Int. J. Mol. Med. 2020, 46, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Mormile, I.; Tuccillo, F.; Della Casa, F.; D’Aiuto, V.; Montuori, N.; De Rosa, M.; Napolitano, F.; de Paulis, A.; Rossi, F.W. The Benefits of Water from Nitrodi’s Spring: The In Vitro Studies Leading the Potential Clinical Applications. Int. J. Mol. Sci. 2023, 24, 13685. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Choi, J.; Maeda, T.; Managi, S. Effects of bathing in different hot spring types on Japanese gut microbiota. Sci. Rep. 2024, 14, 2316. [Google Scholar] [CrossRef] [PubMed]
- Marullo, T.; Abramo, A. Effects of sulphur-arsenic-ferrous water treatment on specific chronic phloglosis of the upper respiratory tract. Acta Otorhinolaryngol. Ital. 1999, 19, 5–14. [Google Scholar] [PubMed]
- Denda, M.; Fuziwara, S.; Inoue, K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J. Investig. Dermatol. 2003, 121, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Celli, A.; Crumrine, D.; Meyer, J.M.; Mauro, T.M. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure. J. Investig. Dermatol. 2016, 136, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.-L.; Celli, A.; Mauro, T.; Chang, W. Calcium-Sensing Receptor Regulates Epidermal Intracellular Ca2+ Signaling and Re-Epithelialization after Wounding. J. Investig. Dermatol. 2019, 139, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Lee, S.H. Skin Barrier and Calcium. Ann. Dermatol. 2018, 30, 265–275. [Google Scholar] [CrossRef]
- Breunig, S.; Wallner, V.; Kobler, K.; Wimmer, H.; Steinbacher, P.; Streubel, M.K.; Bischof, J.; Duschl, J.; Neuhofer, C.; Gruber, W.; et al. The Life in a Gradient: Calcium, the lncRNA SPRR2C and Mir542/Mir196a Meet in the Epidermis to Regulate the Aging Process. Aging 2021, 13, 19127–19144. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, T.; Fauzi, M.B.; Lokanathan, Y.; Law, J.X. The Role of Calcium in Wound Healing. Int. J. Mol. Sci. 2021, 22, 6486. [Google Scholar] [CrossRef] [PubMed]
- Olde-Engberink, R.H.G.; Selvarajah, V.; Vogt, L. Clinical impact of tissue sodium storage. Pediatr. Nephrol. 2020, 35, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, S.M.A.-K. Effect of Topical Application of the Cream Containing Magnesium 2% on Treatment of Diaper Dermatitis and Diaper Rash in Children a Clinical Trial Study. J. Clin. Diagn. Res. 2016, 10, WC04. [Google Scholar] [CrossRef] [PubMed]
- Denda, M.; Katagiri, C.; Hirao, T.; Maruyama, N.; Takahashi, M. Some Magnesium Salts and a Mixture of Magnesium and Calcium Salts Accelerate Skin Barrier Recovery. Arch. Dermatol. Res. 1999, 291, 560–563. [Google Scholar] [CrossRef]
- Shani, J.; Barak, S.; Levi, D.; Ram, M.; Schachner, E.R.; Schlesinger, T.; Robberecht, H.; Van Grieken, R.; Avrach, W.W. Skin penetration of minerals in psoriatics and guinea-pigs bathing in hypertonic salt solutions. Pharmacol. Res. Commun. 1985, 17, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Kirmit, A.; Kader, S.; Aksoy, M.; Bal, C.; Nural, C.; Aslan, O. Trace Elements and Oxidative Stress Status in Patients with Psoriasis. Adv. Dermatol. Allergol. 2020, 37, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Seite, S. Thermal Waters as Cosmeceuticals: La Roche-Posay Thermal Spring Water Example. Clin. Cosmet. Investig. Dermatol. 2013, 6, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Papoiu, A.D.; Valdes-Rodriguez, R.; Nattkemper, L.A.; Chan, Y.H.; Hahn, G.S.; Yosipovitch, G. A novel topical formulation containing strontium chloride significantly reduces the intensity and duration of cowhage-induced itch. Acta Derm. Venereol. 2013, 93, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.; Jafarian-Dehkordi, A.; Hajhashemi, V.; Asilian-Mahabadi, A.; Nasr-Esfahani, M. A Comparison of the Effect of Certain Inorganic Salts on Suppression Acute Skin Irritation by Human Biometric Assay: A Randomized, Double-Blind Clinical Trial. J. Res. Med. Sci. 2016, 21, 102. [Google Scholar] [CrossRef] [PubMed]
- Treiber, N.; Maity, P.; Singh, K.; Ferchiu, F.; Wlaschek, M.; Scharffetter-Kochanek, K. The role of manganese superoxide dismutase in skin aging. Dermato-Endocrinol. 2012, 4, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Goldberg, D.J. Topical manganese peptide in the treatment of photodamaged skin. J. Cosmet. Laser Ther. 2007, 9, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.; Pereira, J.; Gan Giannelli, G.; Murphy, Z.; Anagnostopoulos, V.; Santra, S. Multi-Functional Chitosan Nanovesicles Loaded with Bioactive Manganese for Potential Wound Healing Applications. Molecules 2023, 28, 6098. [Google Scholar] [CrossRef] [PubMed]
- Nzietchueng, R.M.; Dousset, B.; Franck, P.; Benderdour, M.; Nabet, P.; Hess, K. Mechanisms implicated in the effects of boron on wound healing. J. Trace Elem. Med. Biol. 2002, 16, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Pizzorno, L. Nothing Boring About Boron. Integr. Med. 2015, 14, 35. [Google Scholar]
- Türkez, H.; Yıldırım, Ö.Ç.; Öner, S.; Kadı, A.; Mete, A.; Arslan, M.E.; Şahin, İ.O.; Yapça, Ö.E.; Mardinoğlu, A. Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics 2022, 15, 149. [Google Scholar] [CrossRef]
- Şahin, F.; Pirouzpanah, M.B.; Farshbaf-Khalili, A.; Ayşan, E.; Doğan, A.; Demirci, S.; Ostadrahimi, A.; Mobasseri, M. The Effect of the Boron-Based Gel on the Treatment of Diabetic Foot Ulcers: A Prospective, Randomized Controlled Trial. J. Trace Elem. Med. Biol. 2023, 79, 127261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.; Tang, S.; Chen, Y.; Lan, L.; Li, S.; Xiong, M.; Hu, X.; Liu, Y.; Sun, J.; et al. A Boron-Based Probe Driven Theranostic Hydrogel Dressing for Visual Monitoring and Matching Chronic Wound Healing. Adv. Funct. Mater. 2023, 33, 2305580. [Google Scholar] [CrossRef]
- Gul, S.; Cicek, D.; Sahin, K.; Ozercan, I.H.; Orhan, C.; Demir, B.; Er, B. Effect of Boron Element on Photoaging in Rats. J. Photochem. Photobiol. B 2022, 230, 112440. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Haghniaz, R.; Rabbani, A.; Vajhadin, F.; Khan, T.; Kousar, R.; Khan, A.R.; Montazerian, H.; Iqbal, J.; Libanori, A.; Kim, H.-J.; et al. Anti-bacterial and Wound Healing-promoting Effects of Zinc Ferrite Nanoparticles. J. Nanobiotechnol. 2021, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Ouyang, C.; Zhang, W.; Liu, J.; Yu, L.; Chen, G.; Ren, L. Zn-MOF hydrogel: Regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J. Nanobiotechnol. 2023, 21, 163. [Google Scholar] [CrossRef] [PubMed]
- Coavoy-Sánchez, S.A.; Costa, S.K.P.; Muscará, M.N. Hydrogen Sulfide and Dermatological Diseases. Br. J. Pharmacol. 2020, 177, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Xiong, L.; Tang, J.; Li, L.; Li, L. Hydrogen Sulfide in Skin Diseases: A Novel Mediator and Therapeutic Target. Oxidative Med. Cell. Longev. 2021, 2021, 6652086. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, Z.; Zhu, Y.; Shen, Q.; Yang, S.; Cao, S. Hydrogen Sulfide Suppresses Skin Fibroblast Proliferation via Oxidative Stress Alleviation and Necroptosis Inhibition. Oxidative Med. Cell. Longev. 2022, 21, 7434733. [Google Scholar] [CrossRef] [PubMed]
- Armijo, F.; Corvillo, I.; Vázquez Garranzo, M.I.; Carbajo Espejo, J.M.; Maraver, F. The sulphurous spring waters of Spanish spas. Applications and indications. Med. Natur. 2017, 11, 91–99. (In Spanish) [Google Scholar]
- Carbajo, J.M.; Maraver, F. Salt Water and Skin Interactions: New Lines of Evidence. Int. J. Biometeorol. 2018, 62, 1345–1360. [Google Scholar] [CrossRef] [PubMed]
- Mirandola, P.; Gobbi, G.; Micheloni, C.; Vaccarezza, M.; Di Marcantonio, D.; Ruscitti, F.; De Panfilis, G.; Vitale, M. Hydrogen Sulfide Inhibits IL-8 Expression in Human Keratinocytes via MAP Kinase Signaling. Lab. Investig. 2011, 91, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Matz, H.; Orion, E.; Wolf, R. Balneotherapy in dermatology. Dermatol. Ther. 2003, 16, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Prandelli, C.; Parola, C.; Buizza, L.; Delbarba, A.; Marziano, M.; Salvi, V.; Zacchi, V.; Memo, M.; Sozzani, S.; Calza, S.; et al. Sulphurous Thermal Water Increases the Release of the Anti-Inflammatory Cytokine IL-10 and Modulates Antioxidant Enzyme Activity. Int. J. Immunopathol. Pharmacol. 2013, 26, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Valitutti, S.; Castellino, F.; Musiani, P. Effect of sulfurous (thermal) water on T lymphocyte proliferative response. Ann. Allergy 1990, 65, 463–468. [Google Scholar] [PubMed]
- Altaany, Z.; Alkaraki, A.; Abu-Siniyeh, A.; Al Momani, W.; Taani, O. Evaluation of antioxidant status and oxidative stress markers in thermal sulfurous springs residents. Heliyon 2019, 5, e02885. [Google Scholar] [CrossRef] [PubMed]
- Pagourelias, E.D.; Zorou, P.G.; Tsaligopoulos, M.; Athyros, V.G.; Karagiannis, A.; Efthimiadis, G.K. Carbon dioxide balneotherapy and cardiovascular disease. Int. J. Biometeorol. 2011, 55, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Resch, K.L.; Just, U. Möglichkeiten und Grenzen der CO2-Bäder-Therapie [Possibilities and limits of CO2 balneotherapy]. Wien. Med. Wochenschr. 1994, 144, 45–50. (In German) [Google Scholar] [PubMed]
Anions | TSW 1 | Type of Study | Observed Effects | Specific Activities | Reference |
Chloride | Leopoldine (chloride, sodium, sulfate) | Clinical and in vitro studies | Decrease in the numbers of epidermal CD4+ and CD8+ T lymphocytes and CD1a+ Langerhans cells Decrease in the epidermal keratinocyte expression of intercellular adhesion molecule-1 and interleukin-8 and the dermal expression of CD4+ and CD8+ T lymphocyte | PASI score improvement | [10] |
In vivo study | Reduce erythema on inflammation induced by sodium lauryl sulfate | Anti-inflammatory | [11] | ||
Hae-Un-Dae (sodium chloride, sulfate-rich) | In vivo study | Reduction in severity of skin erythema and scales Decrease in serum levels of IL-4 and IL-5 | Immunomodulatory effects | [12] | |
Salies de Béarn (hypersaline mineral water, chloride, sodium, sulfate) | Clinical study | PASI score improvement | Pruritus reduction | [13] | |
In vivo study | Anti-inflammatory on induced AD | Anti-inflammatory on AD | [14] | ||
La Solía (chloride, sodium, sulfate) | In vitro study | Attenuation of the induced levels of different pro-inflammatory mediators (IL-6, IL-1, TNFα, NF-κB, and CCL1) at the level of gene expression | Anti-inflammatory | [15] | |
Sulfate | Uriage (sulfate, chloride, sodium, calcium) | In vitro study | Activation of taurine transporter, regulation of TauT expression, and sodium-dependent vitamin C transporter 1 expression | Protection against UVB irradiation | [16] |
In vitro study | Increased expression of claudin-4, claudin-6, filaggrin, and aquaporine-3 | Skin hydration | [17] | ||
In vitro study | Reduction in the lipid peroxidation induced by the HX/XO stress and restoration of the reduction in skin claudin-6 expression | Protection against UVA + UVB radiation Antioxidant and DNA protection | [18] | ||
In vitro study | Counteracting the increase in biofilm formation of RT4 acneic strain of Cutibacterium acnes after exposure to epinephrine | Antibiofilm activity (prevent biofilm formation) | [19] | ||
Bicarbonate | Avène (bicarbonate, calcium, magnesium, silica) | In vitro study | Inhibition of histamine and prostaglandin D2 antigen-induced release, inhibition of histamine release triggered by substance P | Antiallergic and anti-inflammatory activity | [20] |
In vitro study | Reduction in percentage and area of dilated vessels after VIP stimulation, decrease in TNF-α release | Anti-inflammatory activity | [21] | ||
In vitro study | Inhibition of TNF-α-induced expression of E-selectin and intercellular adhesion molecule 1 (ICAM-1) | Anti-inflammatory effect on AD | [22] | ||
In vitro study | Protection of cell membranes, genomic DNA, and proteins from UVA-induced oxidative stress | Antioxidant activity | [23] | ||
In vitro study | Suppression of induction of inflammatory cytokine (IL-6) and the formation of ROS after UVB stimulation | Anti-inflammatory and antioxidant activity | [24] | ||
Clinical and inflammatory biomarkers study | Reduction in SCORAD and PASI, Reduction in IL-8 and Staphylococcus aureus colonization | Anti-inflammatory properties Preventing growth bacteria | [25] | ||
Clinical study | Reduction in scaling on patients treated with retinoic acid | Soothing properties | [26] | ||
Clinical trials | Decreased erythema Pain reduction Pruritus reduction after phototherapy | Soothing properties Anti-irritant activity | [27,28] | ||
Ex vivo study and clinical study | Maintaining mechanical properties and hydration after a chemical peeling Redness reduction Skin sensitivity reduction | Protection against dehydration Anti-irritant activity | [29] | ||
Comano (bicarbonate, calcium) | In vivo study | Decreasing inflammation | Anti-inflammatory activity | [30] | |
In vitro studies | Interference with vascular endothelial growth factor-A isoform expression and secretion by psoriatic keratinocytes Reduction in intracellular levels and secretion rates of IL-6 Downregulation of intracellular levels of TNF-α and also reduction in the intracellular levels and secretion rates of IL-8 Interference with TNF-α expression and IL-8 production and secretion | Anti-inflammatory activity | [31,32,33] | ||
In vitro study | Increase in keratinocyte proliferation and migration and favorable modulation of regenerated collagen and elastic fibers in the dermis | Skin regeneration | [34] | ||
Ex-vivo study | Reduction in overall cell infiltration, evidence of fibroblasts, stimulation of cell proliferation, and collagen and elastic fiber regeneration | Skin regeneration | [35] | ||
Observational prospective study | Improvement in QoL and SAPASI | Psoriasis improvement | [36] | ||
Controlled, randomized, double-blind clinical study | Reduction in PASI and hydration improvement | Psoriasis improvement | [37] | ||
Observational study | Reduction in AD severity Improvement in QoL | Anti-inflammatory on AD | [38] | ||
Nitrodi (bicarbonate, silica) | In vitro study | Induction of alpha-SMA expression in dermal fibroblasts, promoting transition to myofibroblast-protein ECM deposition | Wound healing improvement | [39] | |
Carbonate | Nagano hot spring water (carbonate-rich) | In vitro study | Enhancement of wound healing process, increasing vessel density and reducing inflammatory cells in the granulation tissue of the wound area | Wound healing improvement | [40] |
Cations | TSW | Type of Study | Observed Effects | Specific Activities | Reference |
Calcium | La Roche-Posay (bicarbonate, calcium, magnesium, strontium, selenium) | Clinical study | Reduction in the inflammatory aspect of scars, relieving itching, facilitating the removal of the crusts, and preventing infections | Wound healing improvement | [41] |
Sodium | Yuda hot spring (alkaline spring water) | In vivo study | Wound healing acceleration | Wound healing improvement | [42] |
Sungai Lalang (sodium-rich spring water) | Clinical study | Enhancement of stratum corneum hydration Reduction in local inflammatory symptoms Improvement in QoL | Acne symptom improvement | [43] | |
Magnesium | Dead Sea (hypersaline, calcium, magnesium-rich) | Improvement in skin barrier function, increase in skin hydration, and reduction in inflammation | Atopic dermatitis improvement | [44] | |
Trace Elements | TSW | Type of Study | Observed Effects | Specific Activities | Reference |
Selenium | La Roche-Posay (bicarbonate, calcium, magnesium, strontium, selenium) | In vitro study | Protective effect against oxidative stress induced by UVB light | Antioxidant | [45] |
In vitro study | Selenium-glutathione peroxidase and superoxide dismutase activity higher than control | Antioxidant | [46] | ||
In vitro study | Better resistance with better cell survival and a reduction in IL-1α cytokine release compared to control after exposure to increasing UVB doses | Antioxidant | [47] | ||
Ex-vivo study | Inhibitory effect for TNF-α | Anti-inflammatory | [48] | ||
In vitro study | Reduction in IL-1α release in irradiated keratinocytes, increase in selenium-dependent glutathione peroxidase activity, and decrease in the production of lipoperoxides after UV irradiation | Antioxidant | [49] | ||
In vitro study | Reduction in IL-6 levels and the formation of ROS after UVB irradiation | Antioxidant | [24] | ||
Clinical study | Reduction in PASI score | Psoriasis improvement | [50] | ||
Strontium | La Roche-Posay (bicarbonate, calcium, magnesium, strontium, selenium) | Ex-vivo study | Inhibitory effect for TNF-α Decrease in IL-6 production | Anti-inflammatory | [48] |
Manganese | Saint-Gervais (boron- and manganese-rich) | In vitro | Acceleration of wound closure | Wound healing improvement | [51] |
Boron | Saint-Gervais (boron- and manganese-rich) | In vitro | Promotion of keratinocytes migration | Wound healing improvement | [51] |
Zinc | Avène (bicarbonate, calcium, magnesium, silica) | Clinical study | Reduction inpruritus after a photodynamic therapy procedure | Anti-inflammatory in post-photodynamic therapy | [27] |
Other Compounds | TSW | Type of Study | Observed Effects | Specific Activities | Reference |
Silica | Sao Pedro do Sul (bicarbonate, silica-rich) | Clinical study | Reduction in skin irritation and promotion of skin barrier recovery | Anti-inflammatory Skin barrier recovery | [52] |
Monfortinho (bicarbonate, silica-rich) | Clinical study | Improvement in skin hydration | Skin hydration improvement in psoriasis and eczema | [53] | |
In vitro | Skin barrier recovery | Skin barrier improvement | [53] | ||
In vitro | Reduction in cell metabolism and proliferation of keratinocytes and macrophages | Improvement of hyperkeratotic conditions | [54] | ||
Blue Lagoon (silica-rich) | Clinical study | Reduction in PASI | Psoriasis improvement | [55,56] | |
Sulfur 2 | La Bourbule (chloride, sodium, sulfurous water) | Wound healing improvement by controlling keratinocyte physiology | Wound healing improvement | [57] | |
Name not mentioned (bicarbonate, sulfurous water) | Observational study | Reduction in PASI score Increase in stratum corneum hydration Improvement in itching and skin dryness | Psoriasis improvement Skin hydration improvement | [58] | |
Molitg-Les-Bains (sodium sulfurous water) | Clinical trial | Reduction in PASI score DLQI improvement VAS pruritus score improvement | Psoriasis improvement | [59] | |
Carbon-dioxide | CO2-enriched water | In vivo | Improvement of blood flow and increase in plasma level of NO in diabetic rats | Improvement blood flow | [60] |
TSW | Main Composition | Beneficial Effects |
---|---|---|
Avène | Bicarbonate, calcium, magnesium, silica, zinc | Soothing properties Protection against dehydration Antiallergic and anti-inflammatory Antioxidant Preventing growth of bacteria |
Blue Lagoon | Silica-rich | Psoriasis improvement |
Comano | Bicarbonate, calcium | Skin regeneration Anti-inflammatory effects Psoriasis improvement |
Dead Sea | Hypersaline, calcium, magnesium-rich | Atopic dermatitis improvement |
Hae-Un-Dae | Sodium chloride, sulfate-rich | Immunomodulatory effects |
La Bourbule | Chloride, sodium, sulfurous water | Wound healing improvement |
La Roche-Posay | Bicarbonate, calcium, magnesium, strontium, selenium | Anti-inflammatory effects Antioxidant Psoriasis improvement Wound healing improvement |
La Solía | Chloride, sodium, sulfate | Anti-inflammatory effects |
Leopoldine | Chloride, sodium, sulfate | PASI score improvement, anti-inflammatory effects |
Molitg-Les-Bains | Sodium sulfurous water | Psoriasis improvement |
Monfortinho | Bicarbonate, silica-rich | Skin hydration improvement in psoriasis and eczema Skin barrier improvement Improvement in hyperkeratotic conditions |
Nagano hot spring water | Carbonate-rich | Wound healing improvement |
Nitrodi | Bicarbonate, silica | Wound healing improvement |
Saint-Gervais | Boron- and manganese-rich | Wound healing improvement |
Salies de Béarn | Hypersaline mineral water, chloride, sodium, sulfate | PASI score improvement Anti-inflammatory on AD |
Sao Pedro do Sul | Bicarbonate, silica-rich | Anti-inflammatory effects Skin barrier recovery |
Sungai Lalang | Sodium-rich | Acne symptom improvement |
Uriage | Sulfate, chloride, sodium, calcium | Skin hydration Protection against UVB irradiation Antioxidant Prevent biofilm formation |
Yuda hot spring | Alkaline spring water (sodium-rich) | Wound healing improvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Unveiling the Role of Minerals and Trace Elements of Thermal Waters in Skin Health. Appl. Sci. 2024, 14, 6291. https://doi.org/10.3390/app14146291
Mourelle ML, Gómez CP, Legido JL. Unveiling the Role of Minerals and Trace Elements of Thermal Waters in Skin Health. Applied Sciences. 2024; 14(14):6291. https://doi.org/10.3390/app14146291
Chicago/Turabian StyleMourelle, M. Lourdes, Carmen P. Gómez, and José L. Legido. 2024. "Unveiling the Role of Minerals and Trace Elements of Thermal Waters in Skin Health" Applied Sciences 14, no. 14: 6291. https://doi.org/10.3390/app14146291
APA StyleMourelle, M. L., Gómez, C. P., & Legido, J. L. (2024). Unveiling the Role of Minerals and Trace Elements of Thermal Waters in Skin Health. Applied Sciences, 14(14), 6291. https://doi.org/10.3390/app14146291