Study on the Three-Dimensional Behavior of Blasting Considering Non-Uniform In-Situ Stresses Distributed along the Blasthole Axis
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Stress Distribution of Rock under NIS Distributed along the Blasthole Axis
2.2. Case Study
3. Material Behavior Models for Numerical Analysis
3.1. Material Model for the Rock
3.2. Material Model for the Explosive
3.3. Calibration of Simulation Parameters
4. Numerical Analysis
4.1. Numerical Model Set-Up
4.2. Discussion on the Side Abutment Pressure
4.3. Discussion on Lateral Pressure Coefficient
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yi, C.P.; Johansson, D.; Greberg, J. Effects of in-situ stresses on the fracturing of rock by blasting. Comput. Geotech. 2017, 104, 321–330. [Google Scholar] [CrossRef]
- He, C.L.; Yang, J.; Yu, Q.Q. Laboratory study on the dynamic response of rock under blast loading with active confining pressure. Int. J. Rock Mech. Min. Sci. 2018, 102, 101–108. [Google Scholar] [CrossRef]
- Brown, E.T.; Hoek, E. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. 1978, 15, 211–215. [Google Scholar] [CrossRef]
- Zhu, J.B.; Liao, Z.Y.; Tang, C.A. Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under In situ stresses. Rock Mech. Rock Eng. 2016, 49, 3935–3946. [Google Scholar] [CrossRef]
- Li, G.J.; Wang, X.Y.; Bai, J.B.; Wu, B.W.; Wu, W.D. Research on the failure mechanism and control technology of surrounding rock in gob-side entry driving under unstable overlying strata. Eng. Fail. Anal. 2022, 138, 106361. [Google Scholar] [CrossRef]
- Liu, H.; Dai, J.X.; Jiang, J.Q.; Wang, P.; Yang, J.Q. Analysis of overburden structure and pressure-relief effect of hard roof blasting and cutting. Adv. Civ. Eng. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Simha, K.R.Y.; Fourney, W.L.; Dick, R.D. Studies on explosively driven cracks under confining In-Situ stresses. In Proceedings of the 25th US Symposium on Rock Mechanics, Evanston, IL, USA, 25–27 June 1984. [Google Scholar]
- Yang, L.Y.; Ding, C.X.; Zhang, L.S.; Bao, S.J.; Zhang, Y.J.; Liu, Z.K. Evolution of blasting cracks in different static compression fields. Chin. J. Geotech. Eng. 2018, 40, 1322–1327. [Google Scholar]
- Yang, L.Y.; Ding, C.X. Fracture mechanism due to blast-imposed loading under high static stress conditions. Int. J. Rock Mech. Min. Sci. 2018, 107, 150–158. [Google Scholar] [CrossRef]
- Tao, J.; Yang, X.G.; Li, H.T.; Zhou, J.W.; Fan, G.; Lu, G.D. Effects of in-situ stresses on dynamic rock responses under blast loading. Mech. Mater. 2020, 145, 103374. [Google Scholar] [CrossRef]
- Yang, R.S.; Ding, C.X.; Li, Y.L.; Yang, L.Y.; Zhao, Y. Crack propagation behavior in slit charge blasting under high static stress conditions. Int. J. Rock Mech. Min. Sci. 2019, 119, 117–123. [Google Scholar] [CrossRef]
- Li, X.P.; Qian, D.; Liu, T.T.; Luo, Y.; Zhao, H.; Huang, J.H. Model test on propagation of blasting stress wave in jointed rock mass under different in-situ stresses. Chin. J. Rock Mech. Eng. 2016, 35, 2188–2196. [Google Scholar]
- Zhang, F.; Yan, G.; Yang, Q.; Gao, J.; Li, Y. Strain field evolution characteristics of free surface during crater blasting in sandstone under high stress. Appl. Sci. 2020, 10, 6285. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, Z.L.; Wang, J.G.; Wang, S.M.; Wang, H.R.; Yin, Y.G.; Li, F. Effect of confining pressure on damage accumulation of rock under repeated blast loading. Int. J. Impact Eng. 2021, 156, 103961. [Google Scholar] [CrossRef]
- Yilmaz, O.; Unlu, T. Three dimensional numerical rock damage analysis under blasting load. Tunn. Undergr. Space Technol. 2013, 38, 266–278. [Google Scholar] [CrossRef]
- Li, X.H.; Zhu, Z.M.; Wang, M.; Wan, D.Y.; Zhou, L.; Liu, R.F. Numerical study on the behavior of blasting in deep rock masses. Tunn. Undergr. Space Technol. 2021, 113, 103968. [Google Scholar] [CrossRef]
- Xie, L.X.; Lu, W.B.; Zhang, Q.B.; Jiang, Q.H.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Sharafisafa, M.; Mortazavi, A.; Maarefvand, P. Wave and fracture propagation in continuum and faulted rock masses: Distinct element modeling. Arab. J. Geosci. 2014, 7, 5021–5035. [Google Scholar] [CrossRef]
- Han, H.Y.; Fukuda, D.; Liu, H.Y.; Salmi, E.F.; Sellers, E.; Liu, T.J.; Chan, A. Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress. Int. J. Rock Mech. Min. Sci. 2020, 127, 104214. [Google Scholar] [CrossRef]
- Song, Z.Q.; Song, Y.; Liu, Y.X.; Chen, M.B.; Hua, Y.F. Appearance rule and application for side abutment pressure of goaf. J. Shandong Univ. Sci. Technol. 1982, 1–25. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=4a048923045acc5b04ba1db6d09d3ea3 (accessed on 22 June 2024). (In Chinese).
- Kirsch, G. Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Z. Vereines Dtsch. Ing. 1898, 42, 797–807. [Google Scholar]
- Hallquist, J.O. LS-DYNA Theory Manual, Version 2006; Livermore Software Technology Corporation: Livermore, CA, USA, 2006. [Google Scholar]
- Wang, J.X.; Yao, Y.; Luo, C.W. Johnson–Holmquist-II(JH-2) constitutive model for rock materials: Parameter determination and application in tunnel smooth blasting. Appl. Sci. 2018, 8, 1675. [Google Scholar] [CrossRef]
- Kong, X.Z.; Qin, F.; Li, C.; Wu, H. A new material model for concrete subjected to intense dynamic loadings. Int. J. Impact Eng. 2018, 120, 60–78. [Google Scholar] [CrossRef]
- Johnson, G.R.; Holmquist, T.J. An improved computational constitutive model for brittle materials. High Press. Sci. Technol. 2008, 309, 981–984. [Google Scholar]
- Zhang, Q.B.; Braithwaite, C.H.; Zhao, J. Hugoniot equation of state of rock materials under shock compression. Philos. Trans. R. Soc. A. 2017, 375, 20160169. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.L.; Bawden, W.F.; Katsabanis, P.D. A new constitutive model for blast damage. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 245–254. [Google Scholar] [CrossRef]
- Banadaki, M.M.D. Stress-Wave Induced Fracture in Rock Due to Explosive Action. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Koneshwaran, S.; Thambiratnam, D.P.; Gallage, C. Performance of buried tunnels subjected to surface blast incorporating fluid structure interaction. J. Perform. Constr. Facil. 2014, 29, 04014084. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Erosion plastic strain EPSF | 2 | Relative shear strength | 0.18 |
Parameter for polynomial EOS | 1.22 | Hugoniot polynomial coefficient (GPa) | 21.29 |
Mass density RO (kg/m3) | 2660 | Break tensile strain rate ET | 3 × 1025 |
Elastic shear modulus SHEAR (GPa) | 21.9 | Reference tensile strain rate EOT | 3 × 10−6 |
Parameter for polynomial EOS | 1.22 | Reference compressive strain rate EOC | 3 × 10−5 |
Parameter for polynomial EOS (GPa) | 25.7 | Volumetric plastic strain fraction in tension PTF | 0.001 |
Compressive strength (MPa) | 167.8 | Tensile strain rate dependence exponent BETAT | 0.036 |
Minimum damaged residual strain EPM | 0.015 | Compressive strain rate dependence exponent BETAC | 0.032 |
Gruneisen gamma GAMMA | 0 | Break compressive strain rate EC | 3 × 1025 |
Lode angle dependence factor | 0.01 | Damage parameter | 0.04 |
Residual surface parameter AN | 0.62 | Tensile yield surface parameter | 0.7 |
Failure surface parameter | 2.44 | Shear modulus reduction factor XI | 0.5 |
Residual surface parameter AF | 0.25 | Crush pressure PEL (MPa) | 125 |
Relative tensile strength | 0.04 | Damage parameter | 1 |
Hugoniot polynomial coefficient (GPa) | 25.7 | Compressive yield surface parameter | 0.53 |
Parameter for polynomial EOS | 0 | Initial porosity ALPHA | 1 |
Hugoniot polynomial coefficient (GPa) | 37.84 | Compaction pressure PCO (GPa) | 6 |
Failure surface parameter | 0.76 | Porosity exponent NP | 3 |
Lode angle dependence factor | 0.68 |
Density/(kg/m3) | Velocity of Detonation/(m/s) | /GPa | /GPa | /GPa | /GPa | |||
---|---|---|---|---|---|---|---|---|
1320 | 6690 | 16 | 575 | 22.4 | 5.73 | 1.81 | 0.276 | 7.42 |
Density/(kg/m3) | Young’s Modulus/GPa | Poisson’s Ratio | Yield Stress/MPa | Tangent Modulus/MPa | /s−1 | ||
---|---|---|---|---|---|---|---|
8330 | 138 | 0.36 | 390 | 110 | 5.286 | 1.346 × 106 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Bai, J.; Meng, N.; Zhao, X. Study on the Three-Dimensional Behavior of Blasting Considering Non-Uniform In-Situ Stresses Distributed along the Blasthole Axis. Appl. Sci. 2024, 14, 6256. https://doi.org/10.3390/app14146256
Wang G, Bai J, Meng N, Zhao X. Study on the Three-Dimensional Behavior of Blasting Considering Non-Uniform In-Situ Stresses Distributed along the Blasthole Axis. Applied Sciences. 2024; 14(14):6256. https://doi.org/10.3390/app14146256
Chicago/Turabian StyleWang, Gongyuan, Jianbiao Bai, Ningkang Meng, and Xiangqian Zhao. 2024. "Study on the Three-Dimensional Behavior of Blasting Considering Non-Uniform In-Situ Stresses Distributed along the Blasthole Axis" Applied Sciences 14, no. 14: 6256. https://doi.org/10.3390/app14146256
APA StyleWang, G., Bai, J., Meng, N., & Zhao, X. (2024). Study on the Three-Dimensional Behavior of Blasting Considering Non-Uniform In-Situ Stresses Distributed along the Blasthole Axis. Applied Sciences, 14(14), 6256. https://doi.org/10.3390/app14146256