Study on the Properties and Fatigue Characteristics of Glass Fiber Composites Due to Porosity
Abstract
1. Introduction
2. Target Structure
3. Materials and Methods
3.1. Pores and Laminate
3.2. Numerical Models
3.2.1. Failure Initiation
3.2.2. Damage Propagation
4. Results and Discussion
4.1. The Results of Progressive Failure Analysis
4.2. The Results of Fatigue Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Matrix damage variable | |
In-plane shear damage variable | |
Fiber tensile failure | |
Fiber compressive failure | |
Matrix tensile failure | |
Matrix compressive failure | |
Shear modulus | |
Number of cycles | |
Shear direction strength | |
Axial direction strength | |
In-plane direction strength | |
Pseudo grain weights | |
Components of the stress tensor |
References
- Centea, T.; Grunenfelder, L.K.; Nutt, S.R. A review of out-of-autoclave prepregs–Material properties, process phenomena, and manufacturing considerations. Compos. Part A Appl. Sci. Manuf. 2015, 70, 132–154. [Google Scholar] [CrossRef]
- Chen, D.; Arakawa, K.; Xu, C. Reduction of void content of vacuum-assisted resin transfer molded composites by infusion pressure control. Polym Compos. 2015, 36, 1629–1637. [Google Scholar] [CrossRef]
- Tahir, M.W.; Hallstrom, S.; Åkermo, M. Effect of dual scale porosity on the overall permeability of fibrous structures. Compos. Sci. Technol. 2014, 103, 56–62. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with mis fitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Kang, M.K.; Lee, W.I.; Hahn, H.T. Formation of microvoids during resin-transfer molding process. Compos. Sci. Technol. 2000, 60, 2427–2434. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, W.I.; Kang, M.K. Analysis and minimization of void formation during resin transfer molding proccess. Compos. Sci. Technol. 2006, 66, 3281–3328. [Google Scholar] [CrossRef]
- Uhl, K.; Lucht, B.; Jeong, H.; Hsu, D.K. Mechanical strength, degradation of graphite fiber reinforced thermoset composites due to porosity. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: New York, NY, USA, 1988; pp. 1075–1082. [Google Scholar]
- Olivier, P.; Cottu, J.P.; Ferret, B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 1995, 26, 509–515. [Google Scholar] [CrossRef]
- Wisnom, M.R.; Reynolds, T.; Gwilliam, N. Reduction in interlaminar shear strength by discrete and distributed voids. Compos. Sci. Technol. 1996, 56, 93–101. [Google Scholar] [CrossRef]
- Koushyar, H.; Alavi-Soltani, S.; Minaie, B.; Violette, M. Effects of variation in autoclave pressure, temperature, and vacuum-application time on porosity and mechanical properties of a carbon fiber/epoxy composite. J. Compos. Mater. 2012, 46, 1985–2004. [Google Scholar] [CrossRef]
- Thomason, J.L. The interface region in glass fibre reinforced epoxy resin composites: 1 Sample preparation, void content and interfacial strength. Composites 1995, 26, 467–475. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, J.; Wu, T.; Liu, Z.; Wu, Z. Review and Assessment of Fatigue Delamination Damage of Laminated Composite Structures. Materials 2023, 16, 7677. [Google Scholar] [CrossRef]
- Turo, A. Simulation of Delamination in Composites under Quasi-Static and Fatigue Loading Using Cohesive Zone Models. Ph.D. Thesis, University of Girona, Girona, Spain, 2006. [Google Scholar]
- Dill, C.W.; Tipton, S.M.; Glaessgen, E.H. Fatigue strength reduction imposed by porosity in a fiberglass composite. In Damage Detection in Composite Materials; Masters, J.E., Ed.; ASTM International: West Conshohocken, PA, USA, 1992. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Peron, M. Fatigue behavior of glass/epoxy laminates in the presence of voids. Int. J. Fatigue 2017, 95, 18–28. [Google Scholar] [CrossRef]
- Palumbo, D.; De Finis, R. Fatigue and Fracture Behavior of Composite Materials. Materials 2023, 16, 7292. [Google Scholar] [CrossRef] [PubMed]
- Bascom, W.; Romans, J. Microvoids in glass-resin composites. Their origin and effect on composite strength. IEC Prod. Res. Dev. 1968, 7, 172–178. [Google Scholar] [CrossRef]
- Schell, J.S.U.; Renggli, M.; van Lenthe, G.H.; Muller, R.; Ermanni, P. Microcomputed tomography determination of glass fibre reinforced polymer meso-structure. Compos. Sci. Technol. 2006, 66, 2016–2022. [Google Scholar] [CrossRef]
- Jeong, H. Effects of Voids on the Mechanical Strength and Ultrasonic Attenuation of Laminated Composites. J. Compos. Mater. 1997, 31, 276–292. [Google Scholar] [CrossRef]
- Sisodia, S.M.; Garcea, S.C.; George, A.R.; Fullwood, D.; Spearing, S.M.; Gamstedt, K. High-resolution computed tomography in resin infused woven carbon fibre composites with voids. Compos. Sci. Technol. 2016, 131, 12–21. [Google Scholar] [CrossRef]
- Howe, C.; Paton, R.; Goodwin, A. A comparison between voids in RTM and prepreg carbon/epoxy laminates. Compos. Process. Microstruct. 1997, 4, 46–54. [Google Scholar]
- Srinivasulu, G.; Velmurugan, R.; Jayasankar, S. Influence of void microstructure on the effective elastic properties of discontinuous fiber-reinforced composites. J. Compos. Mater. 2014, 49, 2745–2755. [Google Scholar] [CrossRef]
- Yang, B.J.; Ha, S.K.; Pyo, S.H.; Lee, H.K. Mechanical characteristics and strengthening effectiveness of randomchopped FRP composites containing air voids. Compos. Part B Eng. 2014, 62, 159–166. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M.J.C.S. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Naganuma, T.; Naito, K.; Kyono, J.; Kagawa, Y. Influence of prepreg conditions on the void occurrence and tensile properties of woven glass fiber-reinforced polyimide composites. Compos. Sci. Technol. 2009, 69, 2428–2433. [Google Scholar] [CrossRef]
- Hagstrand, P.O.; Bonjour, F.; Manson, J.A.E. The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 705–714. [Google Scholar] [CrossRef]
- Matzenmiller, A.; Lubliner, J.; Taylor, R. A constitutive model for anisotropic damage in fiber composites. Mech. Mater. 1995, 20, 125–152. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A Fatigue Failure Criterion for Fiber-Reinforced Composite Materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Furtado, C.; Catalanotti, G.; Arteiro, A.; Gray, P.J.; Wardle, B.L.; Camanho, P.P. Simulation of failure in laminated polymer composites: Building-block validation. Compos. Struct. 2019, 226, 111168. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-08; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing Materials: West Conshohocken, PA, USA, 2014.
- ASTM D6641/D6641M-16e2; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. American Society for Testing Materials: West Conshohocken, PA, USA, 2023.
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Shahverdi, M.; Vassilopoulos, A.P.; Keller, T. Experimental investigation of R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1689–1697. [Google Scholar] [CrossRef]
Value | Units | |
---|---|---|
Young’s modulus | 4000 | MPa |
Poisson’s ration | 0.33 | |
Tensile Strength | 50.419 | MPa |
Compressive strength | 54.737 | MPa |
Shear strength | 46.807 | MPa |
Value | Units | |
---|---|---|
Axial Young’s modulus | 60,128 | MPa |
In-plane Young’s modulus | 64,663 | MPa |
Transverse shear modulus | 4942.2 | MPa |
In-plane Poisson’s ration | 0.13933 | |
Transverse Poisson’s ration | 0.17416 | |
Tensile Strength | 1161.7 | MPa |
Compressive strength | 441.15 | MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Cho, Y.; Park, H. Study on the Properties and Fatigue Characteristics of Glass Fiber Composites Due to Porosity. Appl. Sci. 2024, 14, 6234. https://doi.org/10.3390/app14146234
Lee H, Cho Y, Park H. Study on the Properties and Fatigue Characteristics of Glass Fiber Composites Due to Porosity. Applied Sciences. 2024; 14(14):6234. https://doi.org/10.3390/app14146234
Chicago/Turabian StyleLee, Haseung, Younggen Cho, and Hyunbum Park. 2024. "Study on the Properties and Fatigue Characteristics of Glass Fiber Composites Due to Porosity" Applied Sciences 14, no. 14: 6234. https://doi.org/10.3390/app14146234
APA StyleLee, H., Cho, Y., & Park, H. (2024). Study on the Properties and Fatigue Characteristics of Glass Fiber Composites Due to Porosity. Applied Sciences, 14(14), 6234. https://doi.org/10.3390/app14146234