A Novel Computational Paradigm for Reconstructing Solid CAD Features from a Segmented Manifold Triangular Mesh
Abstract
:1. Introduction
- We present a unified mathematical representation for categorizing four common solid CAD features as generalized swept bodies driven by cross-sectional sketches and feature paths. It facilitates the efficient realization of feature reconstruction through the CAD kernel.
- Utilizing a numerical optimization-based approach, we perform geometric processing on the segmented manifold triangular mesh patch, leading to the extraction of cross-sectional sketch curves and feature paths from its surface.
- We demonstrate how this computational paradigm enables parametric and variant designs of the manifold triangular meshes acquired from 3D scanning, enhancing their compatibility with personalized 3D-printed models.
2. Related Work
2.1. Primitive Fitting
2.2. Solid Feature Reconstruction
3. Overview
4. Methodology
4.1. Extract Feature Paths
4.1.1. Estimate Principal Curvatures of Each Vertex
4.1.2. Generate Feature Sections via Gaussian Mapping
- Sampling at points where the concave and convex features are (0,0) is prohibited, meaning sampling the cross-section of the segmented area to be reconstructed is not allowed;
- Aim to sample at concave features (+,+) or convex features (−,−), ensuring that the discrepancy between the two principal curvature values meets the requirement: . Here, represents the main curvature difference threshold set at 0.005 [36].
4.1.3. Generate Feature Paths from Centroids
4.2. Extract Cross-Sectional Sketches and Reconstruct Features
4.2.1. Segmental Fitting of Curves on Sketch
4.2.2. Solving Geometry Constraints and Optimization
4.2.3. Reconstructing Features Based on Open CASCADE
- (a)
- Extrusion feature
Algorithm 1. Procedure of reconstructing extrusion feature |
- (b)
- Sweep feature
Algorithm 2. Procedure of reconstructing sweep feature |
- (c)
- Rotation feature
Algorithm 3. Procedure of reconstructing rotation feature |
- (d)
- Lofting feature
Algorithm 4. Procedure of reconstructing lofting feature |
5. Experimental Results
5.1. Implementation for Extracting Feature Paths and Cross-Sectional Sketches
- (a)
- Point sampling
- (b)
- Piecewise fitting of curves
- (c)
- Applying geometric constraints
- (d)
- Feature reconstruction
5.2. Comparative Analysis
5.3. Case Studies in CAD Software
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anwer, N.; Mathieu, L. From reverse engineering to shape engineering in mechanical design. CIRP Ann. 2016, 65, 165–168. [Google Scholar] [CrossRef]
- Hou, B.; Peng, J.; He, S.; Huang, Z.; Zhou, H.; Li, D. A similarity-based approach for the variant design of core-pulling mechanism in injection mold design. Int. J. Adv. Manuf. Technol. 2021, 115, 329–344. [Google Scholar] [CrossRef]
- Hou, F.; He, Y.; Qin, H.; Hao, A.M. Knot Optimization for Biharmonic B-splines on Manifold Triangle Meshes. IEEE Trans. Vis. Comput. Graph. 2017, 23, 2082–2095. [Google Scholar] [CrossRef]
- Vaissier, B.; Pernot, J.-P.; Chougrani, L.; Véron, P. Lightweight Mesh File Format Using Repetition Pattern Encoding for Additive Manufacturing. Comput. Aided Des. 2020, 129, 102914. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, S.; Xiao, J.; Wang, Y. Sharp Feature-Preserving 3D Mesh Reconstruction from Point Clouds Based on Primitive Detection. Remote Sens. 2023, 15, 3155. [Google Scholar] [CrossRef]
- Camba, J.D.; Contero, M.; Company, P. Parametric CAD modeling: An analysis of strategies for design reusability. Comput. Aided Des. 2016, 74, 18–31. [Google Scholar] [CrossRef]
- Li, M.; Lin, C.; Chen, W.; Liu, Y.; Gao, S.; Zou, Q. XVoxel-Based Parametric Design Optimization of Feature Models. Comput. Aided Des. 2023, 160, 103528. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, B.; Qi, Q.L.; Cheng, J.F.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [Google Scholar] [CrossRef]
- 3D Systems Inc. Geomagic Design X. Available online: https://www.3dsystems.com/software/geomagic-design-x (accessed on 1 May 2024).
- Berger, M.; Tagliasacchi, A.; Seversky, L.M.; Alliez, P.; Guennebaud, G.; Levine, J.A.; Sharf, A.; Silva, C.T. A Survey of Surface Reconstruction from Point Clouds. Comput. Graph. Forum 2017, 36, 301–329. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Cohen-Steiner, D.; Alliez, P.; Desbrun, M. Variational shape approximation. ACM Trans. Graph. 2004, 23, 905–914. [Google Scholar] [CrossRef]
- Skrodzki, M.; Zimmermann, E.; Polthier, K. Variational shape approximation of point set surfaces. Comput. Aided Geom. Des. 2020, 80, 101875. [Google Scholar] [CrossRef]
- Kovács, I.; Várady, T.; Salvi, P. Applying geometric constraints for perfecting CAD models in reverse engineering. Graph. Models 2015, 82, 44–57. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Chrysathou, Y.; Sharf, A.; Cohen-Or, D.; Mitra, N.J. GlobFit: Consistently fitting primitives by discovering global relations. ACM Trans. Graph. 2011, 30, 52. [Google Scholar] [CrossRef]
- Nan, L.; Wonka, P. PolyFit: Polygonal Surface Reconstruction from Point Clouds. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2372–2380. [Google Scholar]
- Benkő, P.; Martin, R.R.; Várady, T. Algorithms for reverse engineering boundary representation models. Comput. Aided Des. 2001, 33, 839–851. [Google Scholar] [CrossRef]
- Romanengo, C.; Raffo, A.; Biasotti, S.; Falcidieno, B. Recognizing geometric primitives in 3D point clouds of mechanical CAD objects. Comput. Aided Des. 2023, 157, 103479. [Google Scholar] [CrossRef]
- Li, L.; Sung, M.; Dubrovina, A.; Yi, L.; Guibas, L.J. Supervised Fitting of Geometric Primitives to 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2647–2655. [Google Scholar]
- Sharma, G.; Liu, D.; Maji, S.; Kalogerakis, E.; Chaudhuri, S.; Měch, R. ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds; Springer: Cham, Switzerland, 2020; pp. 261–276. [Google Scholar]
- Yan, S.; Yang, Z.; Ma, C.; Huang, H.; Vouga, E.; Huang, Q. HPNet: Deep Primitive Segmentation Using Hybrid Representations. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 2733–2742. [Google Scholar]
- Huang, J.; Zhang, Y.; Sun, M. PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 15323–15333. [Google Scholar]
- Huang, J.; Menq, C.-H. Automatic CAD model reconstruction from multiple point clouds for reverse engineering. J. Comput. Inf. Sci. Eng. 2002, 2, 160–170. [Google Scholar] [CrossRef]
- Bénière, R.; Subsol, G.; Gesquière, G.; Le Breton, F.; Puech, W. A comprehensive process of reverse engineering from 3D meshes to CAD models. Comput. Aided Des. 2013, 45, 1382–1393. [Google Scholar] [CrossRef]
- Goyal, M.; Murugappan, S.; Piya, C.; Benjamin, W.; Fang, Y.; Liu, M.; Ramani, K. Towards locally and globally shape-aware reverse 3D modeling. Comput. Aided Des. 2012, 44, 537–553. [Google Scholar] [CrossRef]
- Wang, J.; Gu, D.; Yu, Z.; Tan, C.; Zhou, L. A framework for 3D model reconstruction in reverse engineering. Comput. Ind. Eng. 2012, 63, 1189–1200. [Google Scholar] [CrossRef]
- Wang, J.; Gu, D.; Gao, Z.; Yu, Z.; Tan, C.; Zhou, L. Feature-Based Solid Model Reconstruction. J. Comput. Inf. Sci. Eng. 2013, 13, 011004. [Google Scholar] [CrossRef]
- Marinov, M.; Amagliani, M.; Barback, T.; Flower, J.; Barley, S.; Furuta, S.; Charrot, P.; Henley, I.; Santhanam, N.; Finnigan, G.T.; et al. Generative Design Conversion to Editable and Watertight Boundary Representation. Comput. Aided Des. 2019, 115, 194–205. [Google Scholar] [CrossRef]
- Marinov, M.; Amagliani, M.; Charrot, P. Boundary conforming mesh to T-NURCC surface conversion. Comput. Graph. 2019, 82, 95–105. [Google Scholar] [CrossRef]
- Bedaka, A.K.; Lin, C.-Y. CAD-based robot path planning and simulation using OPEN CASCADE. Procedia Comput. Sci. 2018, 133, 779–785. [Google Scholar] [CrossRef]
- Zhou, T.; Li, H.; Li, X.; Lange, C.F.; Ma, Y. Feature-based modeling for variable fractal geometry design integrated into CAD system. Adv. Eng. Inf. 2023, 57, 102006. [Google Scholar] [CrossRef]
- Su, Q.; Bi, B.; Zhang, P.; Shen, L.; Huang, X.; Xin, Q. GPR Image Clutter Suppression Using Gaussian Curvature Decomposition in the PCA Domain. Remote Sens. 2022, 14, 4879. [Google Scholar] [CrossRef]
- Principal Curvature. Available online: https://en.wikipedia.org/wiki/Principal_curvature (accessed on 1 July 2024).
- Zhihong, M.; Guo, C.; Yanzhao, M.; Lee, K. Curvature estimation for meshes based on vertex normal triangles. Comput. Aided Des. 2011, 43, 1561–1566. [Google Scholar] [CrossRef]
- Taubin, G. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 902–907. [Google Scholar]
- Sellamani, S.; Muthuganapathy, R.; Kalyanaraman, Y.; Murugappan, S.; Goyal, M.; Ramani, K.; Hoffman, C.M. PCS: Prominent Cross-Sections for Mesh Models. Comput. Aided Des. Applic. 2010, 7, 601–620. [Google Scholar] [CrossRef]
- Park, H.; Lee, J.-H. B-spline curve fitting based on adaptive curve refinement using dominant points. Comput. Aided Des. 2007, 39, 439–451. [Google Scholar] [CrossRef]
- Krystek, M.; Anton, M. A weighted total least-squares algorithm for fitting a straight line. Meas. Sci. Technol. 2007, 18, 3438. [Google Scholar] [CrossRef]
- Chun-jian, H.U.A.; Xue-mei, X.; Ying, C. Spatial arc fitting optimization method based on Lagrangian multiplier method. J. Eng. Des. 2018, 25, 661–667. [Google Scholar] [CrossRef]
- Li, L. Application of Cubic B-Spline Curve in Computer-Aided Animation Design. Comput. Aided Des. Appl. 2020, 18, 43–52. [Google Scholar] [CrossRef]
- van der Meiden, H.A.; Bronsvoort, W.F. A non-rigid cluster rewriting approach to solve systems of 3D geometric constraints. Comput. Aided Des. 2010, 42, 36–49. [Google Scholar] [CrossRef]
- de Regt, R.; van der Meiden, H.A.; Bronsvoort, W.F. A Workbench for Geometric Constraint Solving. Comput. Aided Des. Appl. 2008, 5, 471–482. [Google Scholar] [CrossRef]
- Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin, D.; Panozzo, D. ABC: A Big CAD Model Dataset for Geometric Deep Learning. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9593–9603. [Google Scholar]
- Paviot, T.; Feringa, J. Pythonocc; 3D CAD/CAE/PLM Development Framework for the Python Programming Language. 2018. Available online: https://github.com/tpaviot/pythonocc (accessed on 1 May 2024).
- Aslam, F.A.; Mohammed, H.N.; Lokhande, P.S. Efficient Way of Web Development Using Python and Flask. Int. J. Adv. Res. Comput. Sci. 2015, 6, 54. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F. A Novel Computational Paradigm for Reconstructing Solid CAD Features from a Segmented Manifold Triangular Mesh. Appl. Sci. 2024, 14, 6183. https://doi.org/10.3390/app14146183
Zhao F. A Novel Computational Paradigm for Reconstructing Solid CAD Features from a Segmented Manifold Triangular Mesh. Applied Sciences. 2024; 14(14):6183. https://doi.org/10.3390/app14146183
Chicago/Turabian StyleZhao, Feiyu. 2024. "A Novel Computational Paradigm for Reconstructing Solid CAD Features from a Segmented Manifold Triangular Mesh" Applied Sciences 14, no. 14: 6183. https://doi.org/10.3390/app14146183
APA StyleZhao, F. (2024). A Novel Computational Paradigm for Reconstructing Solid CAD Features from a Segmented Manifold Triangular Mesh. Applied Sciences, 14(14), 6183. https://doi.org/10.3390/app14146183