Sedimentary Characteristics and Evolution of the Late Miocene to Quaternary Tributary Channels in the Head of Bounty Channel, New Zealand
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
4. Results
4.1. Seismic Sequence Analysis
4.2. Seismic Facies Analysis
4.2.1. Facies A: Fill-Type Seismic Facies
4.2.2. Facies B: Mounded Divergent Seismic Facies
4.2.3. Facies C: Wavy Seismic Facies
4.2.4. Facies D: Subparallel Seismic Facies
4.3. Distribution of the Channels and Related Depositional Elements
5. Discussion
5.1. The Formation and Evolution of Tributary Channels System
5.2. The Tectonic Control
5.3. The Effect of Coriolis Force
5.4. Other Controls
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heijnen, M.S.; Clare, M.A.; Cartigny, M.J.B.; Talling, P.J.; Hage, S.; Pope, E.L.; Bailey, L.; Sumner, E.; Lintern, D.G.; Stacey, C.; et al. Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes? Earth Planet. Sci. Lett. 2022, 584, 117481. [Google Scholar] [CrossRef]
- Mayall, M.; Jones, E.; Casey, M. Turbidite channel reservoirs—Key elements in facies prediction and effective development. Mar. Pet. Geol. 2006, 23, 821–841. [Google Scholar] [CrossRef]
- Niyazi, Y.; Eruteya, O.E.; Omosanya, K.d.O.; Harishidayat, D.; Johansen, S.E.; Waldmann, N. Seismic geomorphology of submarine channel-belt complexes in the Pliocene of the Levant Basin, offshore central Israel. Mar. Geol. 2018, 403, 123–138. [Google Scholar] [CrossRef]
- Posamentier, H.W.; Kolla, V. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. J. Sediment. Res. 2003, 73, 367–388. [Google Scholar] [CrossRef]
- Abreu, V.; Sullivan, M.; Pirmez, C.; Mohrig, D. Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels. Mar. Pet. Geol. 2003, 20, 631–648. [Google Scholar] [CrossRef]
- Harishidayat, D.; Omosanya, K.O.; Johansen, S.E.; Eruteya, O.E.; Niyazi, Y. Morphometric analysis of sediment conduits on a bathymetric high: Implications for palaeoenvironment and hydrocarbon prospectivity. Basin Res. 2018, 30, 1015–1041. [Google Scholar] [CrossRef]
- Carter, L.; Carter, R.M. Late Quaternary development of left-bank-dominant levees in the Bounty Trough, New Zealand. Mar. Geol. 1988, 78, 185–197. [Google Scholar] [CrossRef]
- Carter, R.M.; Carter, L. The abyssal bounty fan and lower Bounty Channel: Evolution of a rifted-margin sedimentary system. Mar. Geol. 1996, 130, 181–202. [Google Scholar] [CrossRef]
- Carter, R.M.; Carter, L.; Davy, B. Seismic stratigraphy of the Bounty Trough, south-west Pacific Ocean. Mar. Pet. Geol. 1994, 11, 79–93. [Google Scholar] [CrossRef]
- Davy, B. The Bounty Trough—Basement structure influences on sedimentary basin evolution. Sediment. Basins World 1993, 2, 69–92. [Google Scholar]
- Carter, R.M.; Carter, L. The bounty channel system: A 55-million-year-old sediment conduit to the deep sea, Southwest Pacific Ocean. Geo-Mar. Lett. 1987, 7, 183–190. [Google Scholar] [CrossRef]
- Carter, L.; Carter, R.M.; Nelson, C.S.; Fulthorpe, C.S.; Neil, H.L. Evolution of Pliocene to Recent abyssal sediment waves on Bounty Channel levees, New Zealand. Mar. Geol. 1990, 95, 97–109. [Google Scholar] [CrossRef]
- GEBCO Bathymetric Compilation Group 2020. The GEBCO_2020 Grid—A Continuous Terrain Model of the Global Oceans and Land. 2020. Available online: https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/a29c5465-b138-234d-e053-6c86abc040b9/ (accessed on 10 March 2023).
- Carter, R.M.; McCave, I.; Carter, L. Leg 181 Synthesis: Fronts, Flows, Drifts, Vocanoes, and the Evolution of the Southwestern Gateway to the Pacific Ocean, Eastern New Zealand. In Proceedings of the Ocean Drilling Program: Scientific Results; Texas A & M University: College Station, TX, USA, 2004. [Google Scholar]
- Barrier, A.; Bischoff, A.; Nicol, A.; Browne, G.H.; Bassett, K.N. Relationships between volcanism and plate tectonics: A case-study from the Canterbury Basin, New Zealand. Mar. Geol. 2021, 433, 106397. [Google Scholar] [CrossRef]
- Bache, F.; Mortimer, N.; Sutherland, R.; Collot, J.; Rouillard, P.; Stagpoole, V.; Nicol, A. Seismic stratigraphic record of transition from Mesozoic subduction to continental breakup in the Zealandia sector of eastern Gondwana. Gondwana Res. 2014, 26, 1060–1078. [Google Scholar] [CrossRef]
- Barrier, A.; Browne, G.H.; Nicol, A.; Bassett, K. Sedimentary architecture of a Late Cretaceous under-filled rift basin, Canterbury Basin, New Zealand. Basin Res. 2022, 34, 342–365. [Google Scholar] [CrossRef]
- Bertoni, C.; Gan, Y.; Paganoni, M.; Mayer, J.; Cartwright, J.; Martin, J.; Van Rensbergen, P.; Wunderlich, A.; Clare, A. Late Paleocene pipe swarm in the Great South—Canterbury Basin (New Zealand). Mar. Pet. Geol. 2019, 107, 451–466. [Google Scholar] [CrossRef]
- Sahoo, T.R.; King, P.R.; Bland, K.J.; Strogen, D.P.; Sykes, R.; Bache, F. Tectono-sedimentary evolution and source rock distribution of the mid to Late Cretaceous succession in the Great South Basin, New Zealand. APPEA J. 2014, 54, 259–274. [Google Scholar] [CrossRef]
- Olakunle, O.K.; Ajibola, L.M.; Muhammad, I.H.; Makovsky, Y. Massive seafloor mounds depict potential for seafloor mineral deposits in the Great South Basin (GSB) offshore New Zealand. Sci. Rep. 2021, 11, 9185. [Google Scholar] [CrossRef]
- Omosanya, K.O.; Harishidayat, D. Seismic geomorphology of Cenozoic slope deposits and deltaic clinoforms in the Great South Basin (GSB) offshore New Zealand. Geo-Mar. Lett. 2019, 39, 77–99. [Google Scholar] [CrossRef]
- Sutherland, R.; Spasojevic, S.; Gurnis, M. Mantle upwelling after Gondwana subduction death explains anomalous topography and subsidence histories of eastern New Zealand and West Antarctica. Geology 2010, 38, 155–158. [Google Scholar] [CrossRef]
- Bache, F.; Sutherland, R.; Stagpoole, V.; Herzer, R.; Collot, J.; Rouillard, P. Stratigraphy of the southern Norfolk Ridge and the Reinga Basin: A record of initiation of Tonga–Kermadec–Northland subduction in the southwest Pacific. Earth Planet. Sci. Lett. 2012, 321–322, 41–53. [Google Scholar] [CrossRef]
- Cook, R.A.; Sutherland, R.; Zhu, H. Cretaceous-Cenozoic Geology and Petroleum Systems of the Great South Basin, New Zealand; Institute of Geological and Nuclear Sciences Monograph: Lower Hutt, New Zealand, 1999. [Google Scholar]
- Killops, S.D.; Cook, R.A.; Sykes, R.; Boudou, J.P. Petroleum potential and oil-source correlation in the Great South and Canterbury Basins. N. Z. J. Geol. Geophys. 1997, 40, 405–423. [Google Scholar] [CrossRef]
- Lu, H.; Fulthorpe, C.S.; Mann, P. Three-dimensional architecture of shelf-building sediment drifts in the offshore Canterbury Basin, New Zealand. Mar. Geol. 2003, 193, 19–47. [Google Scholar] [CrossRef]
- Morris, M.Y.; Stanton, B.R.; Neil, H.L. Subantarctic oceanography around New Zealand: Preliminary results from an ongoing survey. N. Z. J. Mar. Freshw. Res. 2001, 35, 499–519. [Google Scholar] [CrossRef]
- Sutton, P.J.H. The Southland Current: A subantarctic current. N. Z. J. Mar. Freshw. Res. 2003, 37, 645–652. [Google Scholar] [CrossRef]
- Carter, R. The role of intermediate-depth currents in continental shelf-slope accretion: Canterbury Drifts, SW Pacific Ocean. Geol. Soc. Lond. Spec. Publ. 2007, 276, 129–154. [Google Scholar] [CrossRef]
- Hayward, B.W.; Sabaa, A.; Grenfell, H.R. Benthic foraminifera and the late Quaternary (last 150 ka) paleoceanographic and sedimentary history of the Bounty Trough, east of New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 211, 59–93. [Google Scholar] [CrossRef]
- Blanke, S. PEP 38264 Caravel-1 Well Completion Report. NZP&M, Ministry of Business, Innovation & Employment (MBIE), New Zealand 2015. Unpublished Petroleum Report PR4896, 127. Available online: https://geodata.nzpam.govt.nz/report/pr4896 (accessed on 10 July 2022).
- Stuart Munday, M.B.; PEP 55792—Sequence Stratigraphic Study 2016. NZP&M, Ministry of Business, Innovation & Employment (MBIE), New Zealand 2016. Unpublished Petroleum Report PR5294. Available online: https://geodata.nzpam.govt.nz/report/pr5294 (accessed on 10 July 2022).
- Mitchum, R.M., Jr.; Vail, P.R.; Sangree, J.B. Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. In Seismic Stratigraphy—Applications to Hydrocarbon Exploration; American Association of Petroleum Geologists: Tulsa, OK, USA, 1977. [Google Scholar]
- Mitchum, R., Jr.; Vail, P.R.; Thompson, S., III. Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. In Seismic Stratigraphy—Applications to Hydrocarbon Exploration; American Association of Petroleum Geologists: Tulsa, OK, USA, 1977. [Google Scholar]
- Strogen, D.P.; King, P.R. A New Zealandia-Wide Seismic Horizon Naming Scheme; GNS Science Report; GNS Science: Lower Hutt, New Zealand, 2014. [Google Scholar]
- Bull, S.; Nicol, A.; Strogen, D.; Kroeger, K.F.; Seebeck, H.S. Tectonic controls on Miocene sedimentation in the Southern Taranaki Basin and implications for New Zealand plate boundary deformation. Basin Res. 2019, 31, 253–273. [Google Scholar] [CrossRef]
- Harishidayat, D.; Raja, W.R. Quantitative Seismic Geomorphology of Four Different Types of the Continental Slope Channel Complexes in the Canterbury Basin, New Zealand. Appl. Sci. 2022, 12, 4386. [Google Scholar] [CrossRef]
- McArthur, A.D.; McCaffrey, W.D. Sedimentary architecture of detached deep-marine canyons: Examples from the East Coast Basin of New Zealand. Sedimentology 2019, 66, 1067–1101. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, G.; Wang, L.; He, M.; Zhu, B.; Guo, Y.; Zhang, H.; Wu, Z. Morphology, seismic stratigraphy, and tectonic control of the Yitong submarine canyons–fan apron system in the northern South China Sea. Mar. Pet. Geol. 2023, 155, 106347. [Google Scholar] [CrossRef]
- Deptuck, M.E.; Steffens, G.S.; Barton, M.; Pirmez, C. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Mar. Pet. Geol. 2003, 20, 649–676. [Google Scholar] [CrossRef]
- Qin, Y.; Alves, T.M.; Constantine, J.; Gamboa, D. Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): Scale comparison with other submarine channel systems. Mar. Pet. Geol. 2016, 78, 455–473. [Google Scholar] [CrossRef]
- Bailey, W.S.; McArthur, A.D.; McCaffrey, W.D. Distribution of contourite drifts on convergent margins: Examples from the Hikurangi subduction margin of New Zealand. Sedimentology 2021, 68, 294–323. [Google Scholar] [CrossRef]
- McArthur, A.D.; Crisóstomo-Figueroa, A.; Wunderlich, A.; Karvelas, A.; McCaffrey, W.D. Sedimentation on structurally complex slopes: Neogene to recent deep-water sedimentation patterns across the central Hikurangi subduction margin, New Zealand. Basin Res. 2022, 34, 1807–1837. [Google Scholar] [CrossRef]
- Picot, M.; Droz, L.; Marsset, T.; Dennielou, B.; Bez, M. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Mar. Pet. Geol. 2016, 72, 423–446. [Google Scholar] [CrossRef]
- Howlett, D.M.; Gawthorpe, R.L.; Ge, Z.; Rotevatn, A.; Jackson, C.A.L. Turbidites, topography and tectonics: Evolution of submarine channel-lobe systems in the salt-influenced Kwanza Basin, offshore Angola. Basin Res. 2021, 33, 1076–1110. [Google Scholar] [CrossRef]
- Janocko, M.; Nemec, W.; Henriksen, S.; Warchoł, M. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Mar. Pet. Geol. 2013, 41, 7–34. [Google Scholar] [CrossRef]
- Soulet, Q.; Migeon, S.; Gorini, C.; Rubino, J.; Raisson, F.; Bourges, P. Erosional versus aggradational canyons along a tectonically-active margin: The northeastern Ligurian margin (western Mediterranean Sea). Mar. Geol. 2016, 382, 17–36. [Google Scholar] [CrossRef]
- Wynn, R.B.; Stow, D.A. Classification and characterisation of deep-water sediment waves. Mar. Geol. 2002, 192, 7–22. [Google Scholar] [CrossRef]
- Yin, S.; Zhong, G.; Guo, Y.; Wang, L. Seismic stratigraphy and tectono-sedimentary framework of the Pliocene to recent Taixinan foreland basin in the northeastern continental margin, South China Sea. Interpretation 2016, 4, SP21–SP32. [Google Scholar] [CrossRef]
- Tek, D.E.; McArthur, A.D.; Poyatos-Moré, M.; Colombera, L.; Allen, C.; Patacci, M.; McCaffrey, W.D. Controls on the architectural evolution of deep-water channel overbank sediment wave fields: Insights from the Hikurangi Channel, offshore New Zealand. N. Z. J. Geol. Geophys. 2021, 65, 141–178. [Google Scholar] [CrossRef]
- Wang, X.; Kneller, B.; Sun, Q. Sediment waves control origins of submarine canyons. Geology 2023, 51, 310–314. [Google Scholar] [CrossRef]
- Zhong, G.; Cartigny, M.J.B.; Kuang, Z.; Wang, L. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. GSA Bull. 2015, 127, 804–824. [Google Scholar] [CrossRef]
- Symons, W.O.; Sumner, E.J.; Talling, P.J.; Cartigny, M.J.B.; Clare, M.A. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Mar. Geol. 2016, 371, 130–148. [Google Scholar] [CrossRef]
- Maselli, V.; Micallef, A.; Normandeau, A.; Oppo, D.; Iacopini, D.; Green, A.; Ge, Z. Active faulting controls bedform development on a deep-water fan. Geology 2021, 49, 1495–1500. [Google Scholar] [CrossRef]
- Cartigny, M.J.B.; Postma, G.; van den Berg, J.H.; Mastbergen, D.R. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling. Mar. Geol. 2011, 280, 40–56. [Google Scholar] [CrossRef]
- Cartigny, M.J.B.; Ventra, D.; Postma, G.; van Den Berg, J.H. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments. Sedimentology 2014, 61, 712–748. [Google Scholar] [CrossRef]
- Oluboyo, A.P.; Gawthorpe, R.L.; Bakke, K.; Hadler-Jacobsen, F. Salt tectonic controls on deep-water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Res. 2014, 26, 597–620. [Google Scholar] [CrossRef]
- Molnar, P.; Atwater, T.; Mammerickx, J.; Smith, S.M. Magnetic Anomalies, Bathymetry and the Tectonic Evolution of the South Pacific since the Late Cretaceous. Geophys. J. Int. 1975, 40, 383–420. [Google Scholar] [CrossRef]
- King, P.R. Tectonic reconstructions of New Zealand: 40 Ma to the Present. N. Z. J. Geol. Geophys. 2000, 43, 611–638. [Google Scholar] [CrossRef]
- Barnes, P.; Sutherland, R.; Delteil, J. Strike-slip structure and sedimentary basins of the southern Alpine Fault, Fiordland, New Zealand. Geol. Soc. Am. Bull. 2005, 117, 411–435. [Google Scholar] [CrossRef]
- Norris, R.J.; Carter, R.M.; Turnbull, I.M. Cainozoic sedimentation in basins adjacent to a major continental transform boundary in southern New Zealand. J. Geol. Soc. 1978, 135, 191–205. [Google Scholar] [CrossRef]
- Uenzelmann-Neben, G.; Grobys, J.; Gohl, K.; Barker, D. Neogene sediment structures in Bounty Trough, eastern New Zealand: Influence of magmatic and oceanic current activity. GSA Bull. 2009, 121, 134–149. [Google Scholar] [CrossRef]
- Sutherland, R.; Davey, F.; Beavan, J. Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure. Earth Planet. Sci. Lett. 2000, 177, 141–151. [Google Scholar] [CrossRef]
- Lu, H.; Fulthorpe, C.S.; Mann, P.; Kominz, M.A. Miocene–Recent tectonic and climatic controls on sediment supply and sequence stratigraphy: Canterbury basin, New Zealand. Basin Res. 2005, 17, 311–328. [Google Scholar] [CrossRef]
- Carter, L.; Carter, R.M.; McCave, I.N. Evolution of the sedimentary system beneath the deep Pacific inflow off eastern New Zealand. Mar. Geol. 2004, 205, 9–27. [Google Scholar] [CrossRef]
- Kumar, P.C.; Alves, T.M.; Sain, K. Submarine canyon systems focusing sub-surface fluid in the Canterbury Basin, South Island, New Zealand. Sci. Rep. 2021, 11, 16990. [Google Scholar] [CrossRef]
- Cossu, R.; Wells, M.G.; Peakall, J. Latitudinal variations in submarine channel sedimentation patterns: The role of Coriolis forces. J. Geol. Soc. 2015, 172, 161–174. [Google Scholar] [CrossRef]
- Peakall, J.; Kane, I.A.; Masson, D.G.; Keevil, G.; McCaffrey, W.; Corney, R. Global (latitudinal) variation in submarine channel sinuosity. Geology 2012, 40, 11–14. [Google Scholar] [CrossRef]
- Akhmetzhanov, A.; Kenyon, N.; Habgood, E.; Van Der Mollen, A.; Nielsen, T.; Ivanov, M.; Shashkin, P. North Atlantic contourite sand channels. Geol. Soc. Lond. Spec. Publ. 2007, 276, 25–47. [Google Scholar] [CrossRef]
- Fuhrmann, A.; Kane, I.; Clare, M.; Ferguson, R.; Schomacker, E.; Bonamini, E.; Contreras, F. Hybrid turbidite-drift channel complexes: An integrated multiscale model. Geology 2020, 48, 562–568. [Google Scholar] [CrossRef]
- Miramontes, E.; Eggenhuisen, J.T.; Jacinto, R.S.; Poneti, G.; Pohl, F.; Normandeau, A.; Campbell, D.C.; Hernández-Molina, F.J. Channel-levee evolution in combined contour current–turbidity current flows from flume-tank experiments. Geology 2020, 48, 353–357. [Google Scholar] [CrossRef]
- Carter, R.M.; Gammon, P.R.; Millwood, L. Glacial–interglacial (MIS 1–10) migrations of the Subtropical Front across ODP Site 1119, Canterbury Bight, Southwest Pacific Ocean. Mar. Geol. 2004, 205, 29–58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Huang, K.; Li, X. Sedimentary Characteristics and Evolution of the Late Miocene to Quaternary Tributary Channels in the Head of Bounty Channel, New Zealand. Appl. Sci. 2024, 14, 6160. https://doi.org/10.3390/app14146160
Deng X, Huang K, Li X. Sedimentary Characteristics and Evolution of the Late Miocene to Quaternary Tributary Channels in the Head of Bounty Channel, New Zealand. Applied Sciences. 2024; 14(14):6160. https://doi.org/10.3390/app14146160
Chicago/Turabian StyleDeng, Xinlan, Ke Huang, and Xiang Li. 2024. "Sedimentary Characteristics and Evolution of the Late Miocene to Quaternary Tributary Channels in the Head of Bounty Channel, New Zealand" Applied Sciences 14, no. 14: 6160. https://doi.org/10.3390/app14146160
APA StyleDeng, X., Huang, K., & Li, X. (2024). Sedimentary Characteristics and Evolution of the Late Miocene to Quaternary Tributary Channels in the Head of Bounty Channel, New Zealand. Applied Sciences, 14(14), 6160. https://doi.org/10.3390/app14146160