Maleic Anhydride-Derived Copolymers Conjugated with Beta-Lactam Antibiotics: Synthesis, Characterization, In Vitro Activity/Stability Tests with Antibacterial Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of DFMACs
2.3. Structural Characterization
2.4. Stability and Activity Measurements
2.5. Sample Preparation for Zeta-Sizer and UV/VIS Measurements
2.6. Sample Preparation for Antibacterial Tests
3. Results
3.1. Characterization Part
3.1.1. Structural Characterization of PMVEMA-AMP DFMAC
3.1.2. Structural Characterization of PIBMA-AMP DFMAC
3.1.3. Structural Characterization of PEMA-AMP DFMAC
3.1.4. Structural Characterization of PMVEMA-CEF DFMAC
3.1.5. Structural Characterization of PIBMA-CEF DFMAC
3.1.6. Structural Characterization of PEMA-CEF DFMAC
3.2. Analysis Part
3.2.1. Comparative PDI, Particle Size and Stability Analyses of DFMACs at Different pH Values
3.2.2. Temporal In Vitro Stability Tests of All DFMACs in Simulated Body Fluids
3.2.3. Activity Analysis of AMP, CEF and DFMACs at Different pH Values and in Simulated Body Fluids
3.2.4. Antibacterial Susceptibility Test Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, P.; Dutta, S.; Chandra, K.; Basak, A. The Never-Ending Story of β-Lactams: Use as Molecular Scaffolds and Building Blocks. In Beta-Lactams: Novel Synthetic Pathways and Applications; Banik, B.K., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 373–419. ISBN 978-3-319-55621-5. [Google Scholar]
- WHO; EML. Model List of Essential Medicines—23rd List (2023); World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Vardanyan, R.S.; Hruby, V.J. Antiviral Drugs. In Synthesis of Essential Drugs; Elsevier: Amsterdam, The Netherlands, 2006; pp. 549–557. [Google Scholar]
- Zhai, Q.Z.; Li, X.D. Immobilization and Sustained Release of Cefalexin on MCF Nano-Mesoporous Material. J. Dispers. Sci. Technol. 2019, 40, 1675–1685. [Google Scholar] [CrossRef]
- Ho, D.K.; Nichols, B.L.B.; Edgar, K.J.; Murgia, X.; Loretz, B.; Lehr, C.M. Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections. Eur. J. Pharm. Biopharm. 2019, 144, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.; Tiwari, R.; Bannerjee, S.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012, 2, 2. [Google Scholar] [CrossRef]
- Ghosh, S. Recent Research and Development in Synthetic Polymer-Based Drug Delivery Systems. J. Chem. Res. 2004, 2004, 241–246. [Google Scholar] [CrossRef]
- Stebbins, N.D.; Ouimet, M.A.; Uhrich, K.E. Antibiotic-Containing Polymers for Localized, Sustained Drug Delivery. Adv. Drug Deliv. Rev. 2014, 78, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.E.; Szoka, F.C.; Fréchet, J.M.J. Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture. Acc. Chem. Res. 2009, 42, 1141–1151. [Google Scholar] [CrossRef]
- Patil, J.P.; Mahajan, H.S. A Review on Polymer Drug Conjugate—What, Why and How? Int. J. Pharm. Sci. Res. 2015, 6, 4611. [Google Scholar]
- Yarce, C.J.; Echeverri, J.D.; Palacio, M.A.; Rivera, C.A.; Salamanca, C.H. Relationship between Surface Properties and in Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees. Pharmaceuticals 2017, 10, 15. [Google Scholar] [CrossRef]
- Hood, D.K.; Musa, O.M. Application of Maleic Anhydride-Based Materials. In Handbook of Maleic Anhydride Based Materials; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Pompe, T.; Zschoche, S.; Herold, N.; Salchert, K.; Gouzy, M.-F.; Sperling, C.; Werner, C. Maleic Anhydride Copolymers—A Versatile Platform for Molecular Biosurface Engineering. Biomacromolecules 2003, 4, 1072–1079. [Google Scholar] [CrossRef]
- Franko, M.D.; Gates, J.E.; Ottenbrite, R.M. Synthesis and In Vitro Antimicrobial Activity of Chloramphenicol-Conjugated Copolymers. J. Bioact. Compat. Polym. 1990, 5, 283–292. [Google Scholar] [CrossRef]
- Popescu, I.; Suflet, D.; Pelin, I.; Chiţanu, G.C. Biomedical Applications of Maleic Anhydride Copolymers. Rev. Roum. Chim. 2011, 56, 173–188. [Google Scholar]
- Bacu, E.; Chitanu, G.C.; Couture, A.; Grandclaudon, P.; Singurel, G.; Carpov, A. Potential Drug Delivery Systems from Maleic Anhydride Copolymers and Phenothiazine Derivatives. Eur. Polym. J. 2002, 38, 1509–1513. [Google Scholar] [CrossRef]
- McCarron, P.; Woolfson, A.; Donnelly, R.; Andrews, G.; Zawislak, A.; Price, J. Influence of Plasticiser Type and Storage Conditions on the Properties of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride) Bioadhesive Films. J. Appl. Polym. Sci. 2004, 91, 1576–1589. [Google Scholar] [CrossRef]
- Goetz, L.; Foston, M.; Mathew, A.P.; Oksman, K.; Ragauskas, A.J. Poly(Methyl Vinyl Ether-Co-Maleic Acid)–Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules 2010, 11, 2660–2666. [Google Scholar] [CrossRef] [PubMed]
- Elizondo, E.; Córdoba, A.; Sala, S.; Ventosa, N.; Veciana, J. Preparation of Biodegradable Poly (Methyl Vinyl Ether-Co-Maleic Anhydride) Nanostructured Microparticles by Precipitation with a Compressed Antisolvent. J. Supercrit. Fluids 2010, 53, 108–114. [Google Scholar] [CrossRef]
- Azori, M. Polymeric Prodrugs. Crit Rev. Ther. Drug Carrier Syst. 1987, 4, 39–65. [Google Scholar] [PubMed]
- Sutekin, S.D.; Atıcı, A.B.; Guven, O.; Hoffman, A.S. Controlling of free radical copolymerization of styrene and maleic anhydride via RAFT process for the preparation of acetaminophen drug conjugates. Radiat. Phys. Chem. 2018, 148, 5–12. [Google Scholar] [CrossRef]
- Smith, P.W.; Zuccotto, F.; Bates, R.H.; Martinez-Martinez, M.S.; Read, K.D.; Peet, C.; Epemolu, O. Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past to Help Discover Long-Acting Oral Drugs in the Future. ACS Infect. Dis. 2018, 4, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Cakiral, K.; Sakar, D. Modification of Poly(Methyl Vinyl Ether—Alt—Maleic Anhydride) with Pregabalin Drug Active Substance via Ring Opening Polymerization of Anhydride Ring in/Noncatalyst Media. Polym. Bull. 2022, 80, 7687–7714. [Google Scholar] [CrossRef]
- Bell, S.A. A Beginner’s Guide to Uncertainty of Measurement; National Physical Laboratory: Teddington, UK, 2001. [Google Scholar]
- Al-Khayri, J.M.; Asghar, W.; Akhtar, A.; Ayub, H.; Aslam, I.; Khalid, N.; Al-Mssallem, M.Q.; Alessa, F.M.; Ghazzawy, H.S.; Attimarad, M. Anthocyanin Delivery Systems: A Critical Review of Recent Research Findings. Appl. Sci. 2022, 12, 12347. [Google Scholar] [CrossRef]
- Bisson-Boutelliez, C.; Fontanay, S.; Finance, C.; Kedzierewicz, F. Preparation and Physicochemical Characterization of Amoxicillin β-Cyclodextrin Complexes. AAPS PharmSciTech 2010, 11, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies. J. Nanoparticle Res. 2009, 11, 77–89. [Google Scholar] [CrossRef]
- Lockman, P.R.; Koziara, J.M.; Mumper, R.J.; Allen, D.D. Nanoparticle Surface Charges Alter Blood–Brain Barrier Integrity and Permeability. J. Drug Target 2004, 12, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Stillhart, C.; Vučićević, K.; Augustijns, P.; Basit, A.W.; Batchelor, H.; Flanagan, T.R.; Gesquiere, I.; Greupink, R.; Keszthelyi, D.; Koskinen, M.; et al. Impact of Gastrointestinal Physiology on Drug Absorption in Special Populations—An UNGAP Review. Eur. J. Pharm. Sci. 2020, 147, 105280. [Google Scholar] [CrossRef] [PubMed]
- Koziolek, M.; Grimm, M.; Becker, D.; Iordanov, V.; Zou, H.; Shimizu, J.; Wanke, C.; Garbacz, G.; Weitschies, W. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap® System. J. Pharm. Sci. 2015, 104, 2855–2863. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Nagasamy Venkatesh, D.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.; Minut, R.; McCrorie, P.; Vasey, C.; Larder, R.; Krumins, E.; Marlow, M.; Rahman, R.; Alexander, C.; Taresco, V.; et al. Role of Self-assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG-PDLLA Copolymers in Aqueous Environments. J. Polym. Sci. A Polym. Chem. 2019, 57, 1801–1810. [Google Scholar] [CrossRef]
- Sandri, G.; Bonferoni, M.C.; Ferrari, F.; Rossi, S.; Caramella, C.M. The Role of Particle Size in Drug Release and Absorption. In Particulate Products; Springer: Cham, Switzerland, 2014; pp. 323–341. [Google Scholar]
- Guo, M.; Wei, M.; Li, W.; Guo, M.; Guo, C.; Ma, M.; Wang, Y.; Yang, Z.; Li, M.; Fu, Q.; et al. Impacts of Particle Shapes on the Oral Delivery of Drug Nanocrystals: Mucus Permeation, Transepithelial Transport and Bioavailability. J. Control. Release 2019, 307, 64–75. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Zainon, S.N.M.; Azmi, W.H. Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids. Micromachines 2021, 2, 176. [Google Scholar] [CrossRef] [PubMed]
- Goscianska, J.; Ejsmont, A.; Stasiłowicz-Krzemień, A.; Sip, S.; Cielecka-Piontek, J. Enhancing Antimicrobial Activity of β-Lactam Antibiotic via Functionalized Mesoporous Carbon-Based Delivery Platforms. Microporous Mesoporous Mater. 2022, 343, 112160. [Google Scholar] [CrossRef]
- Barba, A.A.; Bochicchio, S.; Dalmoro, A.; Caccavo, D.; Cascone, S.; Lamberti, G. Polymeric and Lipid-Based Systems for Controlled Drug Release: An Engineering Point of View. In Nanomaterials for Drug Delivery and Therapy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 267–304. ISBN 9780128165058. [Google Scholar]
- Joseph, E.; Singhvi, G. Multifunctional Nanocrystals for Cancer Therapy: A Potential Nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–116. ISBN 9780128165058. [Google Scholar]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolut. Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Podczeck, F.; Mitchell, C.L.; Newton, J.M.; Evans, D.; Short, M.B. The Gastric Emptying of Food as Measured by Gamma-Scintigraphy and Electrical Impedance Tomography (EIT) and Its Influence on the Gastric Emptying of Tablets of Different Dimensions. J. Pharm. Pharmacol. 2010, 59, 1527–1536. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hindler, J.A. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data: Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014; ISBN 1562388991. [Google Scholar]
- de Souza, L.E. Poly(Vinyl Methyl Ether-Alt-Maleic Anhydride) Based Nanoparticles and Nanocapsules—Formulation and Characterization. Ph.D. Thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, 2017. [Google Scholar]
- Kaplan, E.; Ince, T.; Yorulmaz, E.; Yener, F.; Harputlu, E.; Laçin, N.T. Controlled Delivery of Ampicillin and Gentamycin from Cellulose Hydrogels and Their Antibacterial Efficiency. J. Biomater. Tissue Eng. 2014, 4, 543–549. [Google Scholar] [CrossRef]
- Zafar, A.; Yasir, M.; Alruwaili, N.K.; Imam, S.S.; Alsaidan, O.A.; Alshehri, S.; Ghoneim, M.M.; Alquraini, A.; Rawaf, A.; Ansari, M.J.; et al. Formulation of Self-Nanoemulsifying Drug Delivery System of Cephalexin: Physiochemical Characterization and Antibacterial Evaluation. Polymers 2022, 14, 1055. [Google Scholar] [CrossRef]
S | AMP | CEF | I | I-A | I-C | II | II-A | II-C | III | III-A | III-C |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 0.12 | 0.003 | 0.3 | 0.012 | 0.003 | 0.003 | 0.3 | 0.003 | 0.03 | 0.12 | 0.006 |
5% D | 0.12 | 0.003 | 0.3 | 0.012 | 0.003 | 0.003 | 0.3 | 0.003 | 0.03 | 0.12 | 0.006 |
PBS | 0.12 | 0.003 | 0.3 | 0.012 | 0.003 | 0.003 | 0.3 | 0.003 | 0.03 | 0.12 | 0.006 |
0.9% NaCl | 0.12 | 0.003 | 0.3 | 0.012 | 0.003 | 0.003 | 0.3 | 0.003 | 0.03 | 0.12 | 0.006 |
pH | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
2 | 0.32 | 0.34 | 0.39 | 0.11 | 0.35 | 0.33 | 0.31 | 0.30 |
3 | 0.34 | 0.35 | 0.38 | 0.30 | 0.32 | 0.33 | 0.33 | 0.34 |
4 | 0.30 | 0.32 | 0.29 | 0.28 | 0.33 | 0.33 | 0.33 | 0.30 |
5 | 0.31 | 0.33 | 0.34 | 0.26 | 0.33 | 0.35 | 0.36 | 0.30 |
6 | 0.67 | 0.37 | 0.35 | 0.29 | 0.32 | 0.37 | 0.35 | 0.37 |
7 | 0.33 | 0.41 | 0.33 | 0.30 | 0.30 | 0.35 | 0.33 | 0.32 |
8 | 0.31 | 0.34 | 0.36 | 0.24 | 0.44 | 0.45 | 0.32 | 0.36 |
9 | 0.33 | 0.60 | 0.37 | 0.31 | 0.36 | 0.42 | 0.34 | 0.32 |
10 | 0.31 | 0.36 | 0.39 | 0.31 | 0.38 | 0.36 | 0.33 | 0.36 |
11 | 0.31 | 0.36 | 0.34 | 0.31 | 0.34 | 0.33 | 0.35 | 0.37 |
12 | 0.33 | 0.32 | 0.33 | 0.32 | 0.42 | 0.35 | 0.31 | 0.67 |
13 | 0.34 | 0.32 | 0.34 | 0.36 | 0.36 | 0.39 | 0.34 | 0.46 |
Mean, SD | 0.35 ± 0.10 | 0.37 ± 0.08 | 0.35 ± 0.03 | 0.28 ± 0.06 | 0.65 ± 0.04 | 0.36 ± 0.04 | 0.33 ± 0.02 | 0.37 ± 0.10 |
U | 0.03 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.03 |
pH | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
2 | 870 | 560 | 990 | 672 | 960 | 756 | 767 | 851 |
3 | 850 | 485 | 890 | 396 | 765 | 494 | 708 | 764 |
4 | 750 | 490 | 300 | 207 | 679 | 85 | 657 | 530 |
5 | 710 | 668 | 420 | 196 | 523 | 105 | 627 | 566 |
6 | 685 | 867 | 460 | 218 | 506 | 110 | 541 | 577 |
7 | 680 | 868 | 460 | 222 | 590 | 130 | 544 | 582 |
8 | 680 | 831 | 580 | 288 | 615 | 379 | 571 | 585 |
9 | 670 | 763 | 590 | 364 | 670 | 394 | 580 | 620 |
10 | 690 | 776 | 660 | 362 | 680 | 740 | 587 | 698 |
11 | 745 | 627 | 750 | 486 | 727 | 780 | 651 | 741 |
12 | 900 | 577 | 775 | 728 | 738 | 865 | 722 | 795 |
13 | 990 | 571 | 800 | 857 | 875 | 874 | 843 | 878 |
Mean, SD | 768 ± 107 | 674 ± 142 | 640 ± 208 | 416 ± 224 | 694 ± 133 | 476 ± 318 | 650 ± 95 | 682 ± 121 |
U | 31 | 41 | 60 | 65 | 38 | 92 | 27 | 35 |
pH | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
2 | −2.1 | −4.8 | −13.7 | −10.9 | −9.9 | −14.1 | −10.2 | −11.9 |
3 | −2.4 | −8.5 | −15.9 | −11.9 | −10.1 | −14.6 | −16.4 | −13.4 |
4 | −4.5 | −18.9 | −20.0 | −17.8 | −16.5 | −14.9 | −17.9 | −14.9 |
5 | −9.8 | −19.4 | −32.1 | −25.2 | −17.3 | −24.3 | −20.5 | −17.2 |
6 | −5.1 | −19.7 | −36.8 | −25.2 | −20.0 | −22.7 | −24.2 | −20.9 |
7 | −10.5 | −16.2 | −38.5 | −22.9 | −21.2 | −22.4 | −20.5 | −22.4 |
8 | −11.9 | −16.7 | −29.0 | −22.8 | −22.2 | −22.3 | −17.9 | −21.9 |
9 | −12.6 | −21.2 | −27.8 | −15.6 | −21.5 | −21.2 | −17.7 | −19.7 |
10 | −12.6 | −20.1 | −27.7 | −23.8 | −21.4 | −19.4 | −17.6 | −18.2 |
11 | −14.4 | −21.9 | −25.8 | −21.4 | −19.4 | −19.2 | −17.4 | −16.2 |
12 | −24.2 | −18.2 | −23.8 | −16.7 | −19.6 | −17.7 | −16.9 | −12.3 |
13 | −15.5 | −16.0 | −20.6 | −14.9 | −18.4 | −14.8 | −12.9 | −10.8 |
Mean, SD | −10.5 ± 6.3 | −16.8 ± 5.1 | −26.0 ± 7.7 | −19.1 ± 5.1 | −18.1 ± 4.2 | −19.0 ± 3.7 | −17.5 ± 3.6 | −16.7 ± 4.0 |
U | 1.8 | 1.5 | 2.2 | 1.5 | 1.2 | 1.1 | 1.0 | 1.2 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | 0.28 | 0.43 | 0.34 | 0.35 | 0.42 | 0.39 | 0.37 | 0.35 |
15 | 0.28 | 0.61 | 0.32 | 0.34 | 0.53 | 0.35 | 0.34 | 0.33 |
30 | 0.27 | 0.39 | 0.33 | 0.33 | 0.39 | 0.38 | 0.33 | 0.36 |
60 | 0.27 | 0.38 | 0.35 | 0.34 | 0.37 | 0.36 | 0.38 | 0.36 |
120 | 0.27 | 0.43 | 0.33 | 0.33 | 0.37 | 0.39 | 0.39 | 0.43 |
180 | 0.27 | 0.47 | 0.42 | 0.34 | 0.36 | 0.39 | 0.32 | 0.36 |
1440 (1 d) | 0.35 | 0.43 | 0.40 | 0.34 | 0.33 | 0.37 | 0.38 | 0.31 |
2880 (2 d) | 0.34 | 0.33 | 0.38 | 0.34 | 0.36 | 0.37 | 0.37 | 0.33 |
4320 (3 d) | 0.32 | 0.34 | 0.39 | 0.33 | 0.45 | 0.43 | 0.35 | 0.35 |
10,080 (1 w) | 0.27 | 0.34 | 0.38 | 0.34 | 0.44 | 0.40 | 0.56 | 0.43 |
20,160 (2 w) | 0.34 | 0.60 | 0.37 | 0.34 | 0.31 | 0.42 | 0.47 | 0.29 |
30,240 (3 w) | 0.35 | 0.35 | 0.38 | 0.33 | 0.42 | 0.38 | 0.47 | 0.32 |
Mean, SD | 0.30 ± 0.04 | 0.43 ± 0.10 | 0.37 ± 0.03 | 0.34 ± 0.01 | 0.40 ± 0.06 | 0.39 ± 0.02 | 0.39 ± 0.07 | 0.35 ± 0.04 |
U | 0.01 | 0.03 | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 0.01 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | 550 | 773 | 345 | 300 | 603 | 542 | 333 | 678 |
15 | 570 | 783 | 365 | 330 | 620 | 558 | 340 | 621 |
30 | 515 | 921 | 385 | 335 | 626 | 607 | 356 | 611 |
60 | 520 | 1055 | 390 | 335 | 640 | 660 | 411 | 661 |
120 | 530 | 1038 | 435 | 335 | 647 | 692 | 534 | 627 |
180 | 530 | 1046 | 490 | 340 | 680 | 714 | 680 | 617 |
1440 (1 d) | 590 | 1156 | 500 | 400 | 684 | 786 | 759 | 622 |
2880 (2d) | 1010 | 1347 | 500 | 440 | 654 | 801 | 786 | 624 |
4320 (3 d) | 1020 | 1371 | 525 | 515 | 703 | 843 | 793 | 633 |
10,080 (1 w) | 1520 | 1396 | 550 | 495 | 784 | 850 | 905 | 645 |
20,160 (2 w) | 1550 | 1379 | 590 | 465 | 792 | 852 | 906 | 674 |
30,240 (3 w) | 1570 | 1469 | 610 | 440 | 853 | 864 | 949 | 748 |
Mean, SD | 873 ± 444 | 1145 ± 246 | 474 ± 89 | 394 ± 74 | 691 ± 79 | 731 ± 119 | 646 ± 238 | 647 ± 39 |
U | 128 | 71 | 26 | 21 | 23 | 34 | 69 | 11 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | −30.5 | −7.9 | −28.2 | −27.2 | −24.5 | −19.0 | −18.7 | −23.6 |
15 | −26.6 | −9.8 | −28.0 | −22.0 | −24.0 | −18.8 | −17.4 | −23.3 |
30 | −26.2 | −10.6 | −24.8 | −21.4 | −23.7 | −18.3 | −16 | −22.4 |
60 | −24.4 | −8.3 | −24.3 | −19.0 | −22.8 | −18.6 | −15.4 | −26.3 |
120 | −23.4 | −12.2 | −21.9 | −19.2 | −22.6 | −19.6 | −14.8 | −23.2 |
180 | −22.8 | −14.3 | −20.8 | −19.1 | −22.5 | −20.3 | −13.7 | −20.9 |
1440 (1 d) | −22.5 | −10.6 | −21.7 | −19.6 | −21.5 | −19.4 | −12.3 | −20.9 |
2880 (2 d) | −11.3 | −9.9 | −21.2 | −18.7 | −20.3 | −17.6 | −11.9 | −19.1 |
4320 (3 d) | −7.5 | −6.1 | −21.1 | −17.4 | −20.9 | −16.3 | −10.9 | −17.9 |
10,080 (1 w) | −3.6 | −3.2 | −19.4 | −12.7 | −18.6 | −15.8 | −10.7 | −16.2 |
20,160 (2 w) | −3.3 | −2.7 | −18.0 | −10.5 | −15.3 | −14.0 | −10.4 | −15.4 |
30,240 (3 w) | −3.1 | −2.5 | −17.6 | −9.2 | −15.4 | −14.1 | −9.1 | −14.3 |
Mean, SD | −17.1 ± 10.5 | −8.2 ± 3.8 | −22.3 ± 3.5 | −18.0 ± 5.1 | −21.0 ± 3.1 | −17.7 ± 2.1 | −13.4 ± 3.0 | −20.3 ± 3.7 |
U | 3.0 | 1.1 | 1.0 | 1.5 | 0.9 | 0.6 | 0.9 | 1.1 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | 0.32 | 0.37 | 0.40 | 0.38 | 0.33 | 0.35 | 0.41 | 0.34 |
15 | 0.36 | 0.31 | 0.45 | 0.47 | 0.45 | 0.33 | 0.38 | 0.30 |
30 | 0.43 | 0.33 | 0.43 | 0.33 | 0.36 | 0.36 | 0.57 | 0.38 |
60 | 0.32 | 0.30 | 0.36 | 0.31 | 0.37 | 0.33 | 0.42 | 0.36 |
120 | 0.31 | 0.34 | 0.37 | 0.32 | 0.39 | 0.38 | 0.35 | 0.31 |
180 | 0.35 | 0.37 | 0.33 | 0.34 | 0.36 | 0.39 | 0.34 | 0.39 |
1440 (1 d) | 0.32 | 0.32 | 0.39 | 0.37 | 0.41 | 0.34 | 0.35 | 0.35 |
2880 (2 d) | 0.29 | 0.38 | 0.53 | 0.33 | 0.36 | 0.29 | 0.35 | 0.36 |
4320 (3 d) | 0.33 | 0.34 | 0.43 | 0.32 | 0.42 | 0.37 | 0.41 | 0.35 |
10,080 (1 w) | 0.39 | 0.28 | 0.33 | 0.32 | 0.33 | 0.34 | 0.42 | 0.26 |
20,160 (2 w) | 0.32 | 0.33 | 0.43 | 0.36 | 0.33 | 0.34 | 0.39 | 0.27 |
30,240 (3 w) | 0.33 | 0.30 | 0.36 | 0.31 | 0.29 | 0.43 | 0.41 | 0.24 |
Mean, SD | 0.34 ± 0.04 | 0.33 ± 0.03 | 0.40 ± 0.06 | 0.35 ± 0.05 | 0.37 ± 0.04 | 0.35 ± 0.04 | 0.40 ± 0.06 | 0.33 ± 0.05 |
U | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | 610 | 785 | 683 | 789 | 742 | 689 | 643 | 700 |
15 | 640 | 850 | 688 | 837 | 754 | 699 | 691 | 712 |
30 | 790 | 862 | 746 | 970 | 773 | 748 | 650 | 713 |
60 | 810 | 811 | 756 | 868 | 783 | 823 | 733 | 734 |
120 | 825 | 832 | 758 | 860 | 795 | 851 | 765 | 725 |
180 | 840 | 806 | 778 | 866 | 797 | 876 | 736 | 736 |
1440 (1 d) | 860 | 830 | 833 | 701 | 806 | 904 | 785 | 735 |
2880 (2 d) | 840 | 819 | 845 | 711 | 868 | 913 | 793 | 738 |
4320 (3 d) | 800 | 862 | 916 | 703 | 881 | 910 | 852 | 738 |
10,080 (1 w) | 765 | 890 | 925 | 825 | 905 | 915 | 894 | 744 |
20,160 (2 w) | 740 | 789 | 932 | 945 | 918 | 945 | 892 | 780 |
30,240 (3 w) | 725 | 553 | 963 | 992 | 957 | 952 | 977 | 785 |
Mean, SD | 770 ± 79 | 807 ± 86 | 819 ± 98 | 839 ± 100 | 832 ± 71 | 852 ± 93 | 784 ± 103 | 737 ± 25 |
U | 23 | 25 | 28 | 29 | 20 | 27 | 30 | 7 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | −14.8 | −13.4 | −31.3 | −16.8 | −32.5 | −30.4 | −22.1 | −23.3 |
15 | −14.8 | −15.2 | −27.1 | −20.3 | −32.7 | −27.5 | −18.9 | −22.2 |
30 | −15.8 | −14.7 | −23.0 | −19.7 | −29.4 | −25.6 | −18.6 | −21.3 |
60 | −15.5 | −14.9 | −22.7 | −18.6 | −27.2 | −23.4 | −19.1 | −18.3 |
120 | −18.3 | −13.1 | −21.2 | −14.0 | −26.3 | −24.4 | −18.8 | −17.1 |
180 | −18.7 | −14.5 | −19.5 | −14.0 | −26.6 | −24.0 | −18.0 | −17.1 |
1440 (1 d) | −14.8 | −14.7 | −18.6 | −14.4 | −26.3 | −23.7 | −17.2 | −16.1 |
2880 (2 d) | −12.7 | −13.4 | −18.0 | −13.7 | −25.3 | −23.2 | −15.8 | −16.0 |
4320 (3 d) | −13.9 | −10.9 | −17.7 | −13.8 | −22.7 | −22.9 | −15.6 | −15.5 |
10,080 (1 w) | −8.3 | −10.2 | −15.6 | −13.6 | −22.5 | −20.1 | −15.3 | −15.8 |
20,160 (2 w) | −7.5 | −10.1 | −15.4 | −12.6 | −22.2 | −18.9 | −14.1 | −14.9 |
30,240 (3 w) | −8.0 | −9.6 | −14.5 | −12.5 | −20.5 | −18.4 | −13.8 | −14.6 |
Mean, SD | −13.6 ± 3.8 | −12.9 ± 2.1 | −20.4 ± 5.0 | −15.3 ± 2.8 | −26.2 ± 3.9 | −23.5 ± 3.4 | −17.3 ± 2.4 | −17.7 ± 3.0 |
U | 1.1 | 0.6 | 1.4 | 0.8 | 1.1 | 1.0 | 0.7 | 0.9 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | 0.52 | 0.47 | 0.26 | 0.18 | 0.45 | 0.22 | 0.31 | 0.34 |
15 | 0.35 | 0.34 | 0.23 | 0.20 | 0.34 | 0.26 | 0.32 | 0.34 |
30 | 0.35 | 0.31 | 0.28 | 0.18 | 0.33 | 0.27 | 0.31 | 0.35 |
60 | 0.35 | 0.32 | 0.30 | 0.25 | 0.31 | 0.24 | 0.29 | 0.33 |
120 | 0.35 | 0.32 | 0.29 | 0.21 | 0.33 | 0.19 | 0.35 | 0.35 |
180 | 0.31 | 0.32 | 0.29 | 0.22 | 0.36 | 0.29 | 0.33 | 0.35 |
1440 (1 d) | 0.57 | 0.37 | 0.37 | 0.23 | 0.33 | 0.26 | 0.34 | 0.51 |
2880 (2 d) | 1.10 | 0.32 | 0.30 | 0.23 | 0.39 | 0.31 | 0.33 | 0.39 |
4320 (3 d) | 0.77 | 0.34 | 0.35 | 0.24 | 0.38 | 0.35 | 0.32 | 0.59 |
10,080 (1 w) | 0.43 | 0.32 | 0.36 | 0.32 | 0.32 | 0.38 | 0.35 | 0.35 |
20,160 (2 w) | 0.33 | 0.34 | 0.34 | 0.42 | 0.13 | 0.38 | 0.30 | 0.34 |
30,240 (3 w) | 0.33 | 0.32 | 0.35 | 0.33 | 0.40 | 0.35 | 0.34 | 0.41 |
Mean, SD | 0.48 ± 0.24 | 0.34 ± 0.04 | 0.31 ± 0.04 | 0.25 ± 0.07 | 0.34 ± 0.08 | 0.29 ± 0.06 | 0.32 ± 0.02 | 0.39 ± 0.08 |
U | 0.07 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | 520 | 351 | 281 | 313 | 545 | 153 | 357 | 624 |
15 | 555 | 422 | 285 | 295 | 550 | 180 | 363 | 625 |
30 | 545 | 502 | 293 | 300 | 551 | 189 | 383 | 659 |
60 | 582 | 507 | 316 | 357 | 553 | 207 | 419 | 636 |
120 | 561 | 517 | 320 | 336 | 575 | 245 | 483 | 768 |
180 | 550 | 519 | 332 | 347 | 582 | 247 | 487 | 782 |
1440 (1 d) | 528 | 526 | 338 | 341 | 593 | 261 | 502 | 796 |
2880 (2 d) | 591 | 535 | 341 | 372 | 622 | 281 | 512 | 826 |
4320 (3 d) | 570 | 611 | 357 | 392 | 656 | 326 | 531 | 912 |
10,080 (1 w) | 855 | 616 | 518 | 715 | 668 | 714 | 647 | 917 |
20,160 (2 w) | 846 | 653 | 703 | 830 | 709 | 728 | 695 | 923 |
30,240 (3 w) | 748 | 660 | 746 | 887 | 856 | 738 | 719 | 962 |
Mean, SD | 621 ± 122 | 535 ± 91 | 403 ± 163 | 457 ± 218 | 622 ± 91 | 356 ± 229 | 508 ± 124 | 786 ± 126 |
U | 35 | 26 | 47 | 63 | 26 | 66 | 36 | 36 |
Time (min) | AMP | CEF | PMVEMA-AMP | PIBMA-AMP | PEMA-AMP | PMVEMA-CEF | PIBMA-CEF | PEMA-CEF |
---|---|---|---|---|---|---|---|---|
0 | −9.6 | −16.9 | −25.6 | −15.6 | −27.1 | −31.9 | −22.4 | −26.9 |
15 | −10.1 | −16.7 | −25.3 | −14.4 | −25.3 | −30.2 | −19.2 | −23.8 |
30 | −15.1 | −15.0 | −23.6 | −17.9 | −25.1 | −30.3 | −17.9 | −24.4 |
60 | −15.4 | −10.5 | −23.1 | −18.3 | −24.1 | −27.6 | −17.0 | −20.7 |
120 | −14.9 | −10.5 | −21.7 | −20.3 | −23.3 | −24.6 | −17.9 | −19.4 |
180 | −14.1 | −9.9 | −21.2 | −15.0 | −22.9 | −25.0 | −18.4 | −17.3 |
1440 (1 d) | −10.6 | −9.0 | −21.0 | −14.1 | −22.1 | −24.0 | −19.0 | −16.9 |
2880 (2 d) | −9.5 | −9.3 | −20.1 | −12.4 | −21.3 | −23.9 | −19.1 | −15.3 |
4320 (3 d) | −9.6 | −9.1 | −19.2 | −10.1 | −20.3 | −23.4 | −17.3 | −15.4 |
10,080 (1 w) | −9.8 | −9.6 | −17.7 | −11.3 | −19.8 | −23.9 | −16.5 | −14.4 |
20,160 (2 w) | −8.2 | −8.4 | −15.8 | −10.8 | −18.3 | −21.7 | −16.2 | −13.8 |
30,240 (3 w) | −6.6 | −8.0 | −10.9 | −10.1 | −16.9 | −20.9 | −16.1 | −13.7 |
Mean, SD | −11.1 ± 3.0 | −11.1 ± 3.2 | −20.4 ± 4.2 | −14.2 ± 3.4 | −22.2 ± 3.0 | −25.6 ± 3.6 | −18.1 ± 1.8 | −18.5 ± 4.5 |
U | 0.9 | 0.9 | 1.2 | 1.0 | 0.9 | 1.0 | 0.5 | 1.3 |
Sample | pH | 5% Dex | PBS | 0.9% NaCl |
---|---|---|---|---|
AMP | 6 | 1st week | 2nd week | 3rd week |
PMVEMA-AMP | 5 | 3rd week | 2nd week | 2nd week |
PIBMA-AMP | 2 | 2nd day | 1st week | 2nd day |
PEMA-AMP | 6 | 2 h | 3rd week | 3rd week |
CEF | 6 | 2nd day | 1st week | 1st week |
PMVEMA-CEF | 2 | 0 min | 2nd week | 3rd week |
PIBMA-CEF | 2 | 2nd day | 2nd week | 3rd week |
PEMA-CEF | 5 | 1st week | 1st week | 2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahraman, A.; Sakar, D.; Altikatoglu Yapaoz, M. Maleic Anhydride-Derived Copolymers Conjugated with Beta-Lactam Antibiotics: Synthesis, Characterization, In Vitro Activity/Stability Tests with Antibacterial Studies. Appl. Sci. 2024, 14, 6112. https://doi.org/10.3390/app14146112
Kahraman A, Sakar D, Altikatoglu Yapaoz M. Maleic Anhydride-Derived Copolymers Conjugated with Beta-Lactam Antibiotics: Synthesis, Characterization, In Vitro Activity/Stability Tests with Antibacterial Studies. Applied Sciences. 2024; 14(14):6112. https://doi.org/10.3390/app14146112
Chicago/Turabian StyleKahraman, Aysegul, Dolunay Sakar, and Melda Altikatoglu Yapaoz. 2024. "Maleic Anhydride-Derived Copolymers Conjugated with Beta-Lactam Antibiotics: Synthesis, Characterization, In Vitro Activity/Stability Tests with Antibacterial Studies" Applied Sciences 14, no. 14: 6112. https://doi.org/10.3390/app14146112
APA StyleKahraman, A., Sakar, D., & Altikatoglu Yapaoz, M. (2024). Maleic Anhydride-Derived Copolymers Conjugated with Beta-Lactam Antibiotics: Synthesis, Characterization, In Vitro Activity/Stability Tests with Antibacterial Studies. Applied Sciences, 14(14), 6112. https://doi.org/10.3390/app14146112