The Role of the Microalgae–Bacteria Consortium in Biomass Formation and Its Application in Wastewater Treatment Systems: A Comprehensive Review
Abstract
:1. Introduction
2. The Evolution of Aerobic Biological Systems towards the Microalgae–Bacteria Consortium
3. Insights into Algal–Bacterial Biomass
3.1. Formation Processes of the Microalgae–Bacteria Consortium (MABA)
3.2. MABA General Characteristics
3.3. The Feasibility and Application of Systems Utilizing MABAs
3.4. Obtaining Value-Added By-Products from MABAs
4. Insights into Bacterial–Algal Biomass in Different Operational Configurations
4.1. Sequential Batch Reactor (SBR) Systems
4.2. Single-Batch Photobioreactor (SBP) Systems
4.3. High-Rate Ponds (HRPs)
4.4. Continuous Flow Reactors (CFRs)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chacón, L.; Barrantes, K.; Santamaría-Ulloa, C.; Solano, M.; Reyes, L.; Taylor, L.; Valiente, C.; Symonds, E.M.; Achí, R. A Somatic Coliphage Threshold Approach to Improve the Management of Activated Sludge Wastewater Treatment Plant Effluents in Resource-Limited Regions. Appl. Environ. Microbiol. 2020, 86, e00616-20. [Google Scholar] [CrossRef]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D.G. A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Miao, Y.; Peng, Y.; Zhang, L.; Li, B.; Li, X.; Wu, L.; Wang, S. Partial Nitrification-Anammox (PNA) Treating Sewage with Intermittent Aeration Mode: Effect of Influent C/N Ratios. Chem. Eng. J. 2018, 334, 664–672. [Google Scholar] [CrossRef]
- Goli, A.; Shamiri, A.; Khosroyar, S.; Talaiekhozani, A.; Sanaye, R.; Azizi, K. A Review on Different Aerobic and Anaerobic Treatment Methods in Dairy Industry Wastewater. J. Environ. Treat. Tech. 2019, 6, 113–141. [Google Scholar]
- Sátiro, J.; Cunha, A.; Gomes, A.P.; Simões, R.; Albuquerque, A. Optimization of Microalgae–Bacteria Consortium in the Treatment of Paper Pulp Wastewater. Appl. Sci. 2022, 12, 5799. [Google Scholar] [CrossRef]
- De Godos, I.; Vargas, V.A.; Blanco, S.; González, M.C.G.; Soto, R.; García-Encina, P.A.; Becares, E.; Muñoz, R. A Comparative Evaluation of Microalgae for the Degradation of Piggery Wastewater under Photosynthetic Oxygenation. Bioresour. Technol. 2010, 101, 5150–5158. [Google Scholar] [CrossRef]
- Kohlheb, N.; van Afferden, M.; Lara, E.; Arbib, Z.; Conthe, M.; Poitzsch, C.; Marquardt, T.; Becker, M.Y. Assessing the Life-Cycle Sustainability of Algae and Bacteria-Based Wastewater Treatment Systems: High-Rate Algae Pond and Sequencing Batch Reactor. J. Environ. Manag. 2020, 264, 110459. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Hamelin, J.; Bonnafous, A.; Steyer, J.P. CO2 Addition to Increase Biomass Production and Control Microalgae Species in High Rate Algal Ponds Treating Wastewater. J. CO2 Util. 2018, 28, 292–298. [Google Scholar] [CrossRef]
- Hamawand, I. Energy Consumption in Water/Wastewater Treatment Industry—Optimisation Potentials. Energies 2023, 16, 2433. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Yen, H.W.; Ho, S.H.; Lo, Y.C.; Cheng, C.L.; Ren, N.; Chang, J.S. Cultivation of Chlorella Vulgaris JSC-6 with Swine Wastewater for Simultaneous Nutrient/COD Removal and Carbohydrate Production. Bioresour. Technol. 2015, 198, 619–625. [Google Scholar] [CrossRef]
- Besha, A.T.; Gebreyohannes, A.Y.; Tufa, R.A.; Bekele, D.N.; Curcio, E.; Giorno, L. Removal of Emerging Micropollutants by Activated Sludge Process and Membrane Bioreactors and the Effects of Micropollutants on Membrane Fouling: A Review. J. Environ. Chem. Eng. 2017, 5, 2395–2414. [Google Scholar] [CrossRef]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for Biological Removal and Recovery of Nitrogen from Wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef]
- Leong, W.H.; Lim, J.W.; Lam, M.K.; Uemura, Y.; Ho, C.D.; Ho, Y.C. Co-Cultivation of Activated Sludge and Microalgae for the Simultaneous Enhancements of Nitrogen-Rich Wastewater Bioremediation and Lipid Production. J. Taiwan Inst. Chem. Eng. 2018, 87, 216–224. [Google Scholar] [CrossRef]
- Wang, H.; Hill, R.T.; Zheng, T.; Hu, X.; Wang, B. Effects of Bacterial Communities on Biofuel-Producing Microalgae: Stimulation, Inhibition and Harvesting. Crit. Rev. Biotechnol. 2016, 36, 341–352. [Google Scholar] [CrossRef]
- Chandra, D.; Srivastava, R.; Gupta, V.V.S.R.; Franco, C.M.M.; Paasricha, N.; Saifi, S.K.; Tuteja, N.; Sharma, A.K. Field Performance of Bacterial Inoculants to Alleviate Water Stress Effects in Wheat (Triticum aestivum L.). Plant Soil 2019, 441, 261–281. [Google Scholar] [CrossRef]
- Beckinghausen, A.; Odlare, M.; Thorin, E.; Schwede, S. From Removal to Recovery: An Evaluation of Nitrogen Recovery Techniques from Wastewater. Appl. Energy 2020, 263, 114616. [Google Scholar] [CrossRef]
- Sun, L.; Zuo, W.; Tian, Y.; Zhang, J.; Liu, J.; Sun, N.; Li, J. Performance and Microbial Community Analysis of an Algal-Activated Sludge Symbiotic System: Effect of Activated Sludge Concentration. J. Environ. Sci. 2019, 76, 121–132. [Google Scholar] [CrossRef]
- Leong, W.-H.; Lim, J.-W.; Lam, M.-K.; Uemura, Y.; Ho, Y.-C. Third Generation Biofuels: A Nutritional Perspective in Enhancing Microbial Lipid Production. Renew. Sustain. Energy Rev. 2018, 91, 950–961. [Google Scholar] [CrossRef]
- Arcila, J.S.; Buitrón, G. Microalgae–Bacteria Aggregates: Effect of the Hydraulic Retention Time on the Municipal Wastewater Treatment, Biomass Settleability and Methane Potential. J. Chem. Technol. Biotechnol. 2016, 91, 2862–2870. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Yang, Y.; Zhou, D. The Role of Starvation in Biomass Harvesting and Lipid Accumulation: Co-Culture of Microalgae–Bacteria in Synthetic Wastewater. Environ. Sci. Technol. 2016, 33, 482–489. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.L.; Shi, W.; Zhang, R.; Zhang, Z.; Guo, Y.; Bao, X.; Cui, F. Enhancement of Aerobic Granulation and Nutrient Removal by an Algal–Bacterial Consortium in a Lab-Scale Photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Marcuello, C. Present and Future Opportunities in the Use of Atomic Force Microscopy to Address the Physico-Chemical Properties of Aquatic Ecosystems at the Nanoscale Level. Int. Aquat. Res. 2022, 14, 231–240. [Google Scholar] [CrossRef]
- Pillet, F.; Dague, E.; Pečar Ilić, J.; Ružić, I.; Rols, M.P.; Ivošević DeNardis, N. Changes in Nanomechanical Properties and Adhesion Dynamics of Algal Cells during Their Growth. Bioelectrochemistry 2019, 127, 154–162. [Google Scholar] [CrossRef]
- dos Santos Neto, A.G.; Neto, S.; Barragán-trinidad, M.; Florêncio, L.; Buitrón, G. Strategy for the Formation of Microalgae-Bacteria Aggregates in High-Rate Algal Ponds. Environ. Technol. 2023, 44, 1863–1876. [Google Scholar] [CrossRef]
- Sales, M.; Marinho, T.; Marinho, I.C.; Gavazza, S.; Kato, M.T.; Magnus, B.S.; Florencio, L. Start-up Strategies to Develop Aerobic Granular Sludge and Photogranules in Sequential Batch Reactors. Sci. Total Environ. 2022, 828, 154402. [Google Scholar] [CrossRef]
- Robles, Á.; Capson-Tojo, G.; Galès, A.; Ruano, M.V.; Sialve, B.; Ferrer, J.; Steyer, J.P. Microalgae-Bacteria Consortia in High-Rate Ponds for Treating Urban Wastewater: Elucidating the Key State Indicators under Dynamic Conditions. J. Environ. Manag. 2020, 261, 110244. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-Based Wastewater Treatment: Mechanisms, Challenges, Recent Advances, and Future Prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Show, K.; Lee, D. 8—Anaerobic Treatment Versus Aerobic Treatment; Elsevier B.V.: Amsterdam, The Netherlands, 2017; ISBN 9780444636652. [Google Scholar]
- Magnusson, B.; Ekstrand, E.M.; Karlsson, A.; Ejlertsson, J. Combining High-Rate Aerobic Wastewater Treatment with Anaerobic Digestion of Waste Activated Sludge at a Pulp and Paper Mill. Water Sci. Technol. 2018, 77, 2068–2076. [Google Scholar] [CrossRef]
- Barakat, M.A.E.; Kumar, R.; Al-makishah, N.H.; Neamtallah, A.A.; Alafif, Z.O. S-RGO/ZnS Nanocomposite-Mediated Photocatalytic Pretreatment of Dairy Wastewater to Enhance Aerobic Digestion. Korean J. Chem. Eng. 2019, 36, 1281–1290. [Google Scholar] [CrossRef]
- Lang, X.; Li, Q.; Xu, Y.; Ji, M.; Yan, G.; Guo, S. Aerobic Denitrifiers with Petroleum Metabolizing Ability Isolated from Caprolactam Sewage Treatment Pool. Bioresour. Technol. 2019, 290, 121719. [Google Scholar] [CrossRef]
- Sheng, S.; Liu, B.; Hou, X.; Liang, Z.; Sun, X.; Du, L.; Wang, D. Effects of Different Carbon Sources and C/N Ratios on the Simultaneous Anammox and Denitrification Process. Int. Biodeterior. Biodegrad. 2018, 127, 26–34. [Google Scholar] [CrossRef]
- Van Kessel, M.A.H.J.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op Den Camp, H.J.M.; Kartal, B.; Jetten, M.S.M.; Lücker, S. Complete Nitrification by a Single Microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Angelotti, B.; Wang, Z.W. Continuous-Flow Aerobic Granulation in Plug-Flow Bioreactors Fed with Real Domestic Wastewater. Sci. Total Environ. 2019, 688, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Yang, C.Z.; Pu, W.H.; Yang, J.K.; Liu, F.B.; Zhang, L.; Zhang, J.; Cheng, K. Tolerance to Organic Loading Rate by Aerobic Granular Sludge in a Cyclic Aerobic Granular Reactor. Bioresour. Technol. 2015, 182, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Pronk, M.; De Kreuk, M.K.; De Bruin, B.; Kamminga, P.; Kleerebezem, R.; Van Loosdrecht, M.C.M. Full Scale Performance of the Aerobic Granular Sludge Process for Sewage Treatment. Water Res. 2015, 84, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Satiro, J.; Gomes, A.; Florencio, L.; Simões, R.; Albuquerque, A. Effect of Microalgae and Bacteria Inoculation on the Startup of Bioreactors for Paper Pulp Wastewater and Biofuel Production. J. Environ. Manag. 2024, 362, 121305. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, D.; Zhang, G.; Frigon, M.; Meng, X.; Li, K. Adsorption Mechanisms and the Effect of Oxytetracycline on Activated Sludge. Bioresour. Technol. 2014, 151, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.L.; Sales, E.A.; Kiperstok, A. Energy Production from Microalgae Biomass: Carbon Footprint and Energy Balance. J. Clean. Prod. 2015, 96, 493–500. [Google Scholar] [CrossRef]
- Clabeaux, R.; Carbajales-dale, M.; Ladner, D.; Walker, T. Assessing the Carbon Footprint of a University Campus Using a Life Cycle Assessment Approach. J. Clean. Prod. 2020, 273, 122600. [Google Scholar] [CrossRef]
- Van Den Hende, S.; Beelen, V.; Julien, L.; Lefoulon, A.; Vanhoucke, T.; Coolsaet, C.; Sonnenholzner, S.; Vervaeren, H.; Rousseau, D.P.L. Technical Potential of Microalgal Bacterial Floc Raceway Ponds Treating Food-Industry Effluents While Producing Microalgal Bacterial Biomass: An Outdoor Pilot-Scale Study. Bioresour. Technol. 2016, 218, 969–979. [Google Scholar] [CrossRef]
- Du, B.; Yang, Q.; Li, X.; Yuan, W.; Chen, Y.; Wang, R. Impacts of Long-Term Exposure to Tetracycline and Sulfamethoxazole on the Sludge Granules in an Anoxic-Aerobic Wastewater Treatment System. Sci. Total Environ. 2019, 684, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Rollemberg, S.L.d.S.; de Oliveira, L.Q.; Barros, A.R.M.; Melo, V.M.M.; Firmino, P.I.M.; dos Santos, A.B. Effects of Carbon Source on the Formation, Stability, Bioactivity and Biodiversity of the Aerobic Granule Sludge. Bioresour. Technol. 2019, 278, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhan, H.; Wang, Q.; Wu, G.; Cui, D. Enhanced Aerobic Granulation by Inoculating Dewatered Activated Sludge under Short Settling Time in a Sequencing Batch Reactor. Bioresour. Technol. 2019, 286, 121386. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Mennerich, A.; Urban, B. Synergistic Cooperation between Wastewater-Born Algae and Activated Sludge for Wastewater Treatment: Influence of Algae and Sludge Inoculation Ratios. Bioresour. Technol. 2012, 105, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Dolan, S. Algal-Sludge Granule for Wastewater Treatment and Bioenergy Feedstock Generation. U.S. Patent 10,189,732 B2, 29 January.
- Zhang, B.; Li, W.; Guo, Y.; Zhang, Z.; Shi, W.; Cui, F.; Lens, P.N.L.; Tay, J.H. Microalgal-Bacterial Consortia: From Interspecies Interactions to Biotechnological Applications. Renew. Sustain. Energy Rev. 2020, 118, 109563. [Google Scholar] [CrossRef]
- Trebuch, L.M.; Oyserman, B.O.; Janssen, M.; Wijffels, R.H.; Vet, L.E.M. Impact of Hydraulic Retention Time on Community Assembly and Function of Photogranules for Wastewater Treatment. Water Res. 2020, 173, 115506. [Google Scholar] [CrossRef] [PubMed]
- Milferstedt, K.; Hamelin, J.; Park, C.; Jung, J.; Hwang, Y.; Cho, S.K.; Jung, K.W.; Kim, D.H. Biogranules Applied in Environmental Engineering. Int. J. Hydrogen Energy 2017, 42, 27801–27811. [Google Scholar] [CrossRef]
- Van Den Hende, S.; Beelen, V.; Bore, G.; Boon, N.; Vervaeren, H. Up-Scaling Aquaculture Wastewater Treatment by Microalgal Bacterial Flocs: From Lab Reactors to an Outdoor Raceway Pond. Bioresour. Technol. 2014, 159, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.S.M.; Cai, W.; Zhao, Z.; Zhang, Z.; Shimizu, K.; Lei, Z.; Lee, D.J. Stability of Algal-Bacterial Granules in Continuous-Flow Reactors to Treat Varying Strength Domestic Wastewater. Bioresour. Technol. 2017, 244, 225–233. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.; Esquivel-Elizondo, S.; Dolfing, J.; Rittmann, B.E. Using Microbial Aggregates to Entrap Aqueous Phosphorus. Trends Biotechnol. 2020, 38, 1292–1303. [Google Scholar] [CrossRef]
- He, Q.; Chen, L.; Zhang, S.; Chen, R.; Wang, H.; Zhang, W.; Song, J. Natural Sunlight Induced Rapid Formation of Water-Born Algal-Bacterial Granules in an Aerobic Bacterial Granular Photo-Sequencing Batch Reactor. J. Hazard. Mater. 2018, 359, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Quijano, G.; Arcila, J.S.; Buitrón, G. Microalgal-Bacterial Aggregates: Applications and Perspectives for Wastewater Treatment. Biotechnol. Adv. 2017, 35, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fan, H.; Liu, Y.; Liu, C.; Huang, X. Development of Algae-Bacteria Granular Consortia in Photo-Sequencing Batch Reactor. Bioresour. Technol. 2017, 232, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Zhao, Z.; Zhang, Z.; Shimizu, K.; Utsumi, M.; Lei, Z.; Lee, D.; Tay, J. Algal-Bacterial Aerobic Granule Based Continuous- Flow Reactor with e Effluent Recirculation Instead of Air Bubbling: Stability and Energy Consumption Analysis. Bioresour. Technol. Rep. 2019, 7, 100215. [Google Scholar] [CrossRef]
- Yang, J.; Gou, Y.; Fang, F.; Guo, J.; Lu, L.; Zhou, Y.; Ma, H. Potential of Wastewater Treatment Using a Concentrated and Suspended Algal-Bacterial Consortium in a Photo Membrane Bioreactor. Chem. Eng. J. 2018, 335, 154–160. [Google Scholar] [CrossRef]
- Arcila, J.S.; Buitrón, G. Influence of Solar Irradiance Levels on the Formation of Microalgae-Bacteria Aggregates for Municipal Wastewater Treatment. Algal Res. 2017, 27, 190–197. [Google Scholar] [CrossRef]
- Daudt, G.C.; Xavier, J.A.; Meotti, B.; Guimarães, L.B.; Da Costa, R.H.R. Researching New Ways to Reduce N2O Emission from a Granular Sludge Sequencing Batch Reactor Treating Domestic Wastewater under Subtropical Climate Conditions. Braz. J. Chem. Eng. 2019, 36, 209–220. [Google Scholar] [CrossRef]
- Brockmann, D.; Gérand, Y.; Park, C.; Milferstedt, K.; Hélias, A.; Hamelin, J. Wastewater Treatment Using Oxygenic Photogranule-Based Process Has Lower Environmental Impact than Conventional Activated Sludge Process. Bioresour. Technol. 2021, 319, 124204. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Gao, F.; Qian, C.; Guo, X.; Zheng, Z.; Yang, Z. Enhanced Biomass/Biofuel Production and Nutrient Removal in an Algal Bio Fi Lm Airlift Photobioreactor. Algal Res. 2017, 21, 9–15. [Google Scholar] [CrossRef]
- Hoh, D.; Watson, S.; Kan, E. Algal Biofilm Reactors for Integrated Wastewater Treatment and Biofuel Production: A Review. Chem. Eng. J. 2016, 287, 466–473. [Google Scholar] [CrossRef]
- Makareviciene, V.; Andrulevičiūtė, V.; Skorupskaitė, V.; Kasperovičienė, J. Cultivation of Microalgae Chlorella sp. and Scenedesmus sp. as a Potentional Biofuel Feedstock. Environ. Res. Eng. Manag. 2011, 57, 21–27. [Google Scholar] [CrossRef]
- Abinandan, S.; Shanthakumar, S. Challenges and Opportunities in Application of Microalgae (Chlorophyta) for Wastewater Treatment: A Review. Renew. Sustain. Energy Rev. 2015, 52, 123–132. [Google Scholar] [CrossRef]
- Nirmalakhandan, N.; Selvaratnam, T.; Tchinda, D.; Abeysiriwardana-arachchige, I.S.A.; Delanka-pedige, H.M.K.; Munasinghe-arachchige, S.P. Algal Wastewater Treatment: Photoautotrophic vs. Mixotrophic Processes. Algal Res. 2019, 41, 101569. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.M.; Simões, M. A Review on the Use of Microalgal Consortia for Wastewater Treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Álvarez-díaz, P.D.; Ruiz, J.; Arbib, Z.; Barragán, J.; Garrido-pérez, M.C.; Perales, J.A. Freshwater Microalgae Selection for Simultaneous Wastewater Nutrient Removal and Lipid Production. Algal Res. 2017, 24, 477–485. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.; Ruan, R. Characterization of a Microalga Chlorella sp. Well Adapted to Highly Concentrated Municipal Wastewater for Nutrient Removal and Biodiesel Production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Iqbal, H.M.N.; Vishal, G.; Lee, H.S.; Nagra, S. Algal Biorefinery: A Sustainable Approach to Valorize Algal-Based Biomass towards Multiple Product Recovery. Bioresour. Technol. 2019, 278, 346–359. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhu, R.; Pandey, A.; Sahoo, D. Bioflocculation: An Alternative Strategy for Harvesting of Microalgae—An Overview. Bioresour. Technol. 2017, 242, 227–235. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 Bio-Mitigation Using Microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Rai, V.; Muthuraj, M.; Gandhi, M.N.; Das, D. Real-Time ITRAQ-Based Proteome Profiling Revealed the Central Metabolism Involved in Nitrogen Starvation Induced Lipid Accumulation in Microalgae. Sci. Rep. 2017, 7, 45732. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Deng, Z.; Hu, Z.; Fan, L. Lipid Accumulation and Growth of Chlorella Zofingiensis in Flat Plate Photobioreactors Outdoors. Bioresour. Technol. 2011, 102, 10577–10584. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, J.; Wang, Q.; Yuan, T.; Lei, Z.; Zhang, Z.; Shimizu, K.; Lee, D. Simultaneous Recovery of Phosphorus and Alginate-like Exopolysaccharides from Two Types of Aerobic Granular Sludge. Bioresour. Technol. 2021, 346, 126411. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhao, Z.; Li, D.; Lei, Z.; Zhang, Z.; Lee, D. Algae Granulation for Nutrients Uptake and Algae Harvesting during Wastewater Treatment. Chemosphere 2019, 214, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Chen, Z.; Guo, D.; Liu, Y. Investigations on the Pyrolysis of Microalgal-Bacterial Granular Sludge: Products, Kinetics, and Potential Mechanisms. Bioresour. Technol. 2021, 349, 126328. [Google Scholar] [CrossRef] [PubMed]
- Karakas, I.; Sam, S.B.; Cetin, E.; Dulekgurgen, E.; Yilmaz, G. Resource Recovery from an Aerobic Granular Sludge Process Treating Domestic Wastewater. J. Water Process Eng. 2020, 34, 101148. [Google Scholar] [CrossRef]
- Meng, F.; Xi, L.; Liu, D.; Huang, W.; Lei, Z.; Zhang, Z. Effects of Light Intensity on Oxygen Distribution, Lipid Production and Biological Community of Algal-Bacterial Granules in Photo-Sequencing Batch Reactors. Bioresour. Technol. 2019, 272, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Katam, K.; Bhattacharyya, D. Effect of Solids Retention Time on the Performance of Alga-Activated Sludge Association in Municipal Wastewater Treatment and Biofuel Production. J. Appl. Phycol. 2020, 32, 1803–1812. [Google Scholar] [CrossRef]
- Ye, J.; Liang, J.; Wang, L.; Markou, G.; Jia, Q. Operation Optimization of a Photo-Sequencing Batch Reactor for Wastewater Treatment: Study on Influencing Factors and Impact on Symbiotic Microbial Ecology. Bioresour. Technol. 2018, 252, 7–13. [Google Scholar] [CrossRef]
- Abouhend, A.S.; Mcnair, A.; Kuo-dahab, W.C.; Watt, C.; Butler, C.S.; Milferstedt, K.; Seo, J.; Gikonyo, G.J.; El-moselhy, K.M. The Oxygenic Photogranule Process for Aeration-Free Wastewater Treatment. Environ. Sci. Technol. 2018, 52, 3503–3511. [Google Scholar] [CrossRef]
- Ji, X.; Jiang, M.; Zhang, J.; Jiang, X.; Zheng, Z. The Interactions of Algae-Bacteria Symbiotic System and Its Effects on Nutrients Removal from Synthetic Wastewater. Bioresour. Technol. 2018, 247, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Dong, W.; Chang, Y.; Yan, G.; Chu, Z.; Ling, Y.; Wang, Z.; Fan, T.; Li, C. Nitrogen Removal and Microbial Community for the Treatment of Rural Domestic Sewage with Low C/N Ratio by A/O Biofilter with Arundo Donax as Carbon Source and Filter Media. J. Water Process Eng. 2020, 37, 101509. [Google Scholar] [CrossRef]
- Li, B.; Huang, W.; Zhang, C.; Feng, S.; Zhang, Z.; Lei, Z.; Sugiura, N. Effect of TiO2nanoparticles on Aerobic Granulation of Algal-Bacterial Symbiosis System and Nutrients Removal from Synthetic Wastewater. Bioresour. Technol. 2015, 187, 214–220. [Google Scholar] [CrossRef]
- Huang, W.; Li, B.; Zhang, C.; Zhang, Z.; Lei, Z.; Lu, B.; Zhou, B. Effect of Algae Growth on Aerobic Granulation and Nutrients Removal from Synthetic Wastewater by Using Sequencing Batch Reactors. Bioresour. Technol. 2015, 179, 187–192. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, Z.; Bee, M.; Gibson, V.; Wei, L.; Huang, X.; Liu, C. Characteristics and Performance of Aerobic Algae-Bacteria Granular Consortia in a Photo-Sequencing Batch Reactor. J. Hazard. Mater. 2018, 349, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Mhedhbi, E.; Khelifi, N.; Foladori, P.; Smaali, I. Real-Time Behavior of a Microalgae-Bacteria Consortium Treating Wastewater in a Sequencing Batch Reactor in Response to Feeding Time and Agitation Mode. Water 2020, 12, 1893. [Google Scholar] [CrossRef]
- Barreiro-vescovo, S.; González-fernández, C.; Ballesteros, M.; De Godos, I. Activity Determination of an Algal-Bacterial Consortium Developed during Wastewater Treatment Based on Oxygen Evolution. J. Water Process Eng. 2020, 36, 101278. [Google Scholar] [CrossRef]
- Watari, T.; Fukushima, Y.; Miwa, T.; Hirakata, Y.; Kawakami, S. Development of a Photo-Baffled Reactor for Microalgae-Nitrifying Bacteria Consortia: Achieving Long-Term, Stable Partial Nitrification. J. Environ. Chem. Eng. 2021, 9, 106082. [Google Scholar] [CrossRef]
- Qi, F.; Jia, Y.; Mu, R.; Ma, G.; Guo, Q.; Meng, Q. Convergent Community Structure of Algal—Bacterial Consortia and Its Effects on Advanced Wastewater Treatment and Biomass Production. Sci. Rep. 2021, 11, 21118. [Google Scholar] [CrossRef]
- Kang, D.; Kim, K. Real Wastewater Treatment Using a Moving Bed and Wastewater-Borne Algal–Bacterial Consortia with a Short Hydraulic Retention Time. Processes 2021, 9, 116. [Google Scholar] [CrossRef]
- Arcila, J.; Céspedes, D.; Buitrón, G. Influence of Wavelength Photoperiods and N/P Ratio on Wastewater Treatment with Microalgae–Bacteria. Water Sci. Technol. 2021, 84, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, Y.; Li, Z.; Chen, X.; Lei, Z.; Yuan, T.; Shimizu, K.; Zhang, Z.; Kim, S.; Lee, D. Effect of Stepwise or One-Time Illumination Strategy on the Development of Algal-Bacterial Aerobic Granular Sludge in Sequencing Batch Reactor. Bioresour. Technol. Rep. 2022, 17, 100931. [Google Scholar] [CrossRef]
- Noshadi, M.; Nouripour, R. Urban Wastewater Treatment by Microalgae, Bacteria and Microalgae–Bacteria System (Laboratory-Scale Study). Urban Water J. 2022, 19, 161–172. [Google Scholar] [CrossRef]
- Zahra, S.A.; Purba, L.D.A.; Abdullah, N.; Yuzir, A.; Iwamoto, K.; Lei, Z.; Hermana, J. Characteristics of Algal-Bacterial Aerobic Granular Sludge Treating Real Wastewater: Effects of Algal Inoculation and Alginate-like Exopolymers Recovery. Chemosphere 2023, 329, 138595. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z.; Lei, Z.; Qian, X.; Zhang, Z.; Liu, X.; Lee, D.J. Disintegration and Re-Granulation of Aged Algal-Bacterial Aerobic Granular Sludge in Wastewater Treatment. J. Water Process Eng. 2024, 57, 104614. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, S.H.; Cheng, C.L.; Guo, W.Q.; Nagarajan, D.; Ren, N.Q.; Lee, D.J.; Chang, J.S. Perspectives on the Feasibility of Using Microalgae for Industrial Wastewater Treatment. Bioresour. Technol. 2016, 222, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, G.; Lee, K. Treatment of Real Wastewater Using Co-Culture of Immobilized Chlorella Vulgaris and Suspended Activated Sludge. Water Res. 2017, 120, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tian, Y.; Zhang, J.; Li, L.; Zhang, J.; Li, J. A Novel Membrane Bioreactor Inoculated with Symbiotic Sludge Bacteria and Algae: Performance and Microbial Community Analysis. Bioresour. Technol. 2018, 251, 311–319. [Google Scholar] [CrossRef]
- Zhu, S.; Qin, L.; Feng, P.; Shang, C.; Wang, Z.; Yuan, Z. Treatment of Low C/N Ratio Wastewater and Biomass Production Using Co-Culture of Chlorella Vulgaris and Activated Sludge in a Batch Photobioreactor. Bioresour. Technol. 2019, 274, 313–320. [Google Scholar] [CrossRef]
- Robles, Á.; Capson-Tojo, G.; Gales, A.; Viruela, A.; Sialve, B.; Seco, A.; Steyer, J.P.; Ferrer, J. Performance of a Membrane-Coupled High-Rate Algal Pond for Urban Wastewater Treatment at Demonstration Scale. Bioresour. Technol. 2020, 301, 122672. [Google Scholar] [CrossRef]
- Sánchez, A.; Tomás, Z.; María, L.; Amaral, M.; Gómez, C. Wastewater Treatment Using Scenedesmus Almeriensis: Effect of Operational Conditions on the Composition of the Microalgae—Bacteria Consortia. J. Appl. Phycol. 2021, 33, 3885–3897. [Google Scholar] [CrossRef]
- Coronado-apodaca, K.G. Influence of the Solids Retention Time on the Formation of the Microalgal-Bacterial Aggregates Produced with Municipal Wastewater. J. Water Process Eng. 2022, 46, 102617. [Google Scholar] [CrossRef]
- Gao, D.; Liu, L.; Liang, H.; Wu, W.M. Aerobic Granular Sludge: Characterization, Mechanism of Granulation and Application to Wastewater Treatment. Crit. Rev. Biotechnol. 2011, 31, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, J.; Zhao, Q.; Wei, W.; Sun, Y. Comparative Study of Wastewater Treatment and Nutrient Recycle via Activated Sludge, Microalgae and Combination Systems. Bioresour. Technol. 2016, 211, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Picot, B.; El Halouani, H.; Casellas, C.; Moersidik, S.; Bontoux, J. Nutrient Removal by High Rate Pond System in a Mediterranean Climate (France). Water Sci. Technol. 1991, 23, 1535–1541. [Google Scholar] [CrossRef]
- García, J.; Green, B.F.; Lundquist, T.; Mujeriego, R.; Hernández-mariné, M.; Oswald, W.J. Long Term Diurnal Variations in Contaminant Removal in High Rate Ponds Treating Urban Wastewater. Bioresour. Technol. 2006, 97, 1709–1715. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Ferrer, I.; Uggetti, E.; Arnabat, C.; Salvadó, H.; García, J. Settling Velocity Distribution of Microalgal Biomass from Urban Wastewater Treatment High Rate Algal Ponds. Algal Res. 2016, 16, 409–417. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Heubeck, S.; Park, J.; Turnbull, M.H.; Craggs, R.J. Seasonal Performance of a Full-Scale Wastewater Treatment Enhanced Pond System. Water Res. 2018, 136, 150–159. [Google Scholar] [CrossRef]
- Park, J.B.K.; Craggs, R.J. Algal Production in Wastewater Treatment High Rate Algal Ponds for Potential Biofuel Use. Water Sci. Technol. 2011, 63, 2403–2410. [Google Scholar] [CrossRef]
- Arbib, Z.; De Godos, I.; Ruiz, J.; Perales, J.A. Optimization of Pilot High Rate Algal Ponds for Simultaneous Nutrient Removal and Lipids Production. Sci. Total Environ. 2017, 589, 66–72. [Google Scholar] [CrossRef]
- Buchanan, N.A.; Young, P.; Cromar, N.J.; Fallowfield, H.J. Performance of a High Rate Algal Pond Treating Septic Tank Effluent from a Community Wastewater Management Scheme in Rural South Australia. Algal Res. 2018, 35, 325–332. [Google Scholar] [CrossRef]
- de Aguiar do Couto, E.; Calijuri, M.L.; Assemany, P.P.; Tango, M.D.; da Fonseca Santiago, A. Influence of Solar Radiation on Nitrogen Recovery by the Biomass Grown in High Rate Ponds. Ecol. Eng. 2015, 81, 140–145. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Park, J.; Ralph, P.J.; Craggs, R.J. Improved Microalgal Productivity and Nutrient Removal through Operating Wastewater High Rate Algal Ponds in Series. Algal Res. 2020, 47, 101850. [Google Scholar] [CrossRef]
- Mehrabadi, A.; Craggs, R.; Farid, M.M. Wastewater Treatment High Rate Algal Ponds (WWT HRAP) for Low-Cost Biofuel Production. Bioresour. Technol. 2015, 184, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.; Girijan, S.; Tripathy, B.K.; Ali, M.A.S.; Kumar, M. Algal–Bacterial Symbiosis and Its Application in Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128198605. [Google Scholar]
- Couto, E.A.; Calijuri, M.L.; Assemany, P.P.; Souza, M.H.B. Effect of Depth of High-Rate Ponds on the Assimilation of CO2 by Microalgae Cultivated in Domestic Sewage. Environ. Technol. 2018, 39, 2653–2661. [Google Scholar] [CrossRef] [PubMed]
- Santiago, A.F.; Calijuri, M.L.; ASsemany, P.P.; Calijuri, M.D.C.; Reis, A.J.D.D. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent. Environ. Technol. 2013, 34, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.L.; Turnbull, M.H.; Craggs, R.J. Environmental Drivers That Influence Microalgal Species in Fullscale Wastewater Treatment High Rate Algal Ponds. Water Res. 2017, 124, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Corsino, S.F.; Campo, R.; Di Bella, G.; Torregrossa, M.; Viviani, G. Study of Aerobic Granular Sludge Stability in a Continuous-Flow Membrane Bioreactor. Bioresour. Technol. 2016, 200, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Kent, T.R.; Bott, C.B.; Wang, Z.W. State of the Art of Aerobic Granulation in Continuous Flow Bioreactors. Biotechnol. Adv. 2018, 36, 1139–1166. [Google Scholar] [CrossRef]
- Kang, D.; Kim, K.; Jang, Y.; Moon, H.; Ju, D.; Kwon, G.; Jahng, D. Enhancement of Wastewater Treatment Efficiency through Modulation of Aeration and Blue Light on Wastewater-Borne Algal-Bacterial Consortia. Int. Biodeterior. Biodegrad. 2018, 135, 9–18. [Google Scholar] [CrossRef]
- Tricolici, O.; Bumbac, C.; Patroescu, V.; Postolache, C. Dairy Wastewater Treatment Using an Activated Sludge-Microalgae System at Different Light Intensities. Water Sci. Technol. 2014, 69, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
Biomass | Size (mm) | SV (m.h−1) | SVI (mL.g−1) | Sedimentation (%) | References |
---|---|---|---|---|---|
AGS | 0.2–16 | 18–130 | <80 | - | [49] |
AS | 0.0005–1 | 0.6–15 | 100–150 | 84.44 | [13,14,49] |
76.8 | |||||
MABAs | 0.1–5 | 36–360 | 42.55 | 42.37 | |
8.3 | 57 | 92 | [13,14,19,48,49] | ||
>90 | |||||
MA | 0.005–0.05 | 0.001–0.026 | - | 13 | [13,54] |
Reactor Model | Effluent Concentration | Operational Conditions | Treatment Performance | Biomass Characteristics | Microalgae Species | Remarks | References |
---|---|---|---|---|---|---|---|
SBR | Synthetic wastewater COD = 600 mg/L NH4+-N = 100 mg/L PO43–P = 23 mg/L | Volume = 1.4 L Natural lighting HRT = 8 h | 96% COD removal 99% NH4+-N removal 46% TN removal | MLVSS = 5.4–5.5 g/L SVI30 = 30–40 mL/g | - | The algal–bacterial granules showed an excellent nutrient removal rate. Good EPS production contributed to granule stability. | [85] |
SBR | Synthetic wastewater COD = 600 mg/L NH4+-N = 100 mg/L PO43–P = 10 mg/L | Volume = 1.4 L Natural lighting HRT = 8 h | 95% COD removal 98% NH4+-N removal | MLVSS = 7.7 g/L SVI30 = 38 mL/g | - | The algae–bacteria consortium directly affected the biodiversity of the microbial community. The system showed low phosphorus removal efficiency. | [86] |
SBR | Synthetic wastewater COD = 1200 mg/L NH4+-N = 200 mg/L PO43–P = 16 mg/L | Volume = 1.4 L Illumination = 121 µmol/m2.s HRT = 12 h | 97% COD removal 99% NH4+-N removal 90% TP removal | MLVSS = 8.6 g/L SVI30 = 78 mL/g Granule diameter = 3.25 mm | Trebouxiophyceae sp. Bacillariophyceae sp. Chlorophyceae sp. | There was good formation of the algae–bacteria consortium and good nutrient removal. High protein content was found in the biomass. | [21] |
SBR | Synthetic wastewater COD = 200 mg/L NH4+-N = 200 mg/L TP = 5 mg/L | Volume = 3.6 L HRT = 12 h | - | Dark granules were observed from day 7. | Diatomea Chlorophyceae Chrysophyceae Trebouxioplyceae | The eukaryotic algae were replaced by green algae during the granulation process. | [53] |
SBR | Synthetic wastewater COD = 300 mg/L NH4+-N = 30 mg/L TP = 10 mg/L | Volume = 0.92 L Illumination = 6000 LUX | 98% COD removal 50% TP removal | MLVSS = 28.9 mg/L SVI5 = 24 mL/g | Chlorella sp. Scenedesmus sp. | Microalgae predominated over granules. The granules offered good nutrient removal performance. | [87] |
SBR | Real wastewater COD = 498 mg/L | Volume = 1.5 L Illumination = 200 µmol/m2s HRT = 4, 6, and 8 h | 54% COD removal 47% TP removal | Stabilized granules were observed from day 8. | Nannochloropsis gaditana Chlorella, Scenedesmus, and Tetradesmus | An inconsistency was observed in the process of homogenization of the medium, which may be related to the chemical precipitation of phosphorus. | [88] |
SBR | Real wastewater COD = 498 mg/L NH4+-N = 34.1 mg/L PO43–P = 4.9 mg/L | Volume = 1 L Illumination = 122 µmol/m2s | 37% COD removal 70% NH4+-N removal | - | Chlorella sorokiniana | The respiration of endogenous microalgae had an impact on oxygen absorption during the dark phase of the system. | [89] |
SBR | Synthetic wastewater COD = 492 mg/L TN = 101.3 mg/L TP = 5.2 mg/L | Volume = 1.72 L HRT = 12 h | 85% COD removal 15% TN removal 49% TP removal | - | Green algae and diatoms | Photobioreactors with the presence of an algal–bacterial consortium are a promising technology for removing macro- and micropollutants. | [80] |
SBR | Synthetic wastewater NH4+-N = 180 mg/L | Volume = 3.2 L | 66% NH4+-N removal | MLVSS = 950 mg/L (day 200) | Chlorella vulgaris Nitrosomonas europaea | RNA analysis of the sludge showed an increase in nitrosomonas, which may indicate good performance in the system’s partial nitrification process. | [90] |
SBR | Synthetic wastewater COD = 150 mg/L TN = 5 mg/L TP = 40 mg/L | Volume = 12.5 L Illumination = 4000 LUX | 39% COD removal 74% TN removal 94% TP removal | Increase in biomass of 90% | Chlorella sp. and Scenedesmus sp. Anabaena sp. and Oscillatoria sp. | The consortium with the 5:1 algae/sludge ratio achieved greater granular structuring and biomass growth. | [91] |
SBR | Real wastewater COD = 249 mg/L TN = 63 mg/L TP = 6.7 mg/L | Volume = 12.5 L Illumination = 200 µmol/m2s HRT = 2.5 days | 97% COD removal 88% TN removal 88% TP removal | - | Chlorella sp. Scenedesmus sp. | The use of a moving support material in photobioreactors can be an essential factor in nutrient removal in systems with lower HRT. | [92] |
SBR | Synthetic wastewater COD = 179 mg/L NH4+-N = 15.1 mg/L PO43–P = 11.5 mg/L | Volume = 500 L Illumination = 120 µmol/m2s | 53% COD removal 68% NH4+-N removal | - | Chlorella sp. | Mixing wavelength photoperiods (blue:green) is a suitable strategy for increasing biomass production and removing organic matter and nutrients. | [93] |
SBR | Synthetic wastewater COD = 300 mg/L TP = 5 mg/L | Volume = 0.92 L HRT = 6 h | 99% COD removal 58% TP removal | MLVSS = 112 mg/L (day 40) | - | The strategy of fractionating the lighting period contributed to an increase in chlorophyll. | [94] |
SBR | Synthetic wastewater COD = 300 mg/L TP = 5 mg/L | Volume = 0.92 L HRT = 12 h | 99% COD removal 55% TP removal | - | Chlorella vulgaris | In the treatment containing the microalgae–bacteria aggregate, there was competition between these organisms, which reduced the performance of the bioreactor’s nitrate removal efficiency. | [95] |
SBR | Synthetic wastewater COD = 400 mg/L NH4+-N = 100 mg/L PO43–P = 10 mg/L | Volume = 3.5 L Illumination = 140 µmol/m2s | 74% COD removal 69% NH4+-N removal | MLVSS = 6.3 g/L | Chlorella sp., and diatoms, Navicula sp. | Increasing the C:N ratio from 4:1 to 8:1 resulted in greater biomass accumulation. | [25] |
SBR | Real wastewater COD = 294 mg/L | Volume = 1.5 L Illumination = 113 µmol/m2s HRT = 12 h | 88% COD removal | SVI30 = 100 mL/g | Tetradesmus sp. | Microalgae inoculation may not be necessary to develop algal–bacterial AGS when treating real municipal wastewater. | [96] |
SBR | Synthetic wastewater COD = 500 mg/L NH4+-N = 50 mg/L PO43–P = 10 mg/L | Illumination = 255 µmol/m2s HRT = 8 h | 99% COD removal 93% TP removal | MLVSS = 4.1 g/L | Chlorococcum sp. and Chlorella sorokiniana | The algal–bacterial granules were observed to break into filamentous flocs and relatively compact fragments due to the hydrolysis of anaerobic cores. | [97] |
SBP | Real wastewater COD = 380 mg/L NH4+-N = 39.4 mg/L PO43–P = 8.8 mg/L | Volume = 14 L Illumination = 700 LUX | 91% COD removal 100% TN removal 94% TP removal | - | Green and blue filamentous algae | The best inoculum ratio was 1090 mg/L of microalgae:200 mg/L of sludge, after which there was a significant increase in the sedimentability of the biomass. | [45] |
SBP | Synthetic wastewater COD = 1200 mg/L NH4+-N = 45 mg/L PO43–P = 12 mg/L | Volume = 0.5 L Illumination = 200 µmol/m2s | 87% COD removal 99% TN removal 84% TP removal | SVI30 = 42.5 mL/g | Chlorella sp. | The best results were achieved in systems with continuous lighting. There was growth of rhizobacteria. | [98] |
SBP | Synthetic wastewater COD = 60 mg/L NH4+-N = 28.7 mg/L PO43–P = 1.3 mg/L | Volume = 2 L Illumination = 100 µmol/m2s | 95% TN removal 92% TP removal | MLVSS = 2 g/L | Chlorella vulgaris | Various inoculum concentrations were studied. The best ratio was 400 mg/L algae:200 mg/L sludge. | [99] |
SBP | Synthetic wastewater COD = 440 mg/L NH4+-N = 50 mg/L PO43–P = 12.8 mg/L | Volume = 2 L Illumination = 4600 LUX | 91% COD removal 98% TN removal 84% TP removal | - | - | For an initial concentration of 300 mg/L of activated sludge, various initial concentrations were tested, with the best being 700 mg/L. | [100] |
SBP | Real wastewater COD = 440 mg/L NH4+-N = 50 mg/L | Volume = 1 L Illumination = 70 µmol/m2s | 97% TN removal | - | Chlorella vulgaris | The best inoculum ratio was 100 mg/L sludge:75 mg/L algae. | [13] |
SBP | Synthetic wastewater COD = 1130 mg/L NH4+-N = 260 mg/L PO43–P = 28.5 mg/L | Volume = 1 L Illumination = 200 µmol/m2s | 83% COD removal 75% TN removal 100% TP removal | - | Chlorella vulgaris | By studying the composition of the biomass, it was possible to use it for biofuels and animal feed. | [101] |
SBP | Real wastewater COD = 1000 mg/L | Volume = 1 L Illumination = 100 µmol/m2s | 85% COD removal 87% TN removal 86% TP removal | MLVSS = 1100 mg/L | Scenedesmus sp. | The reactors showed a greater possibility of harvesting the biomass to generate bioproducts with added value. | [5] |
HRP | Real wastewater COD = 593 mg/L NH4+-N = 72 mg/L PO43–P = 16 mg/L | Volume = 50 L Illumination = 200 µmol/m2s HRT = 10, 6, and 2 days | 91% COD removal 99% NH4+-N removal 49% TP removal | - | Cyanobacteria Diatoms Green algae | At an HRT of 2 days, the system collapsed. Methane production = 55.7 mL/gVSd was observed. | [19] |
HRP | Real wastewater COD = 591 mg/L NH4+-N = 64 mg/L PO43–P = 15 mg/L | Volume = 50 L HRT = 10 days | 84% COD removal 98% NH4+-N removal 92% TP removal | SVI30 = 40–740 mL/g | Cyanobacteria Diatoms Green algae | The production of EPSs was fundamental in the formation and structuring of the granule. | [58] |
HRP | Real wastewater COD = 332 mg/L NH4+-N = 39 mg/L PO43–P = 361 mg/L | Volume = 22,000 L HRT = 10 days | 98% COD removal 86% NH4+-N removal 98% TP removal | SVI30 = 45–109 mL/g | Cyanobacteria Diatoms Green algae | After 26 days of operation, the HRPs were fully functional. The bacterial community was established after 10 days of operation. | [102] |
HRP | Real wastewater COD = 296.5–858.3 mg/L NH4+-N = 58–136 mg/L PO43–P = 7.8–27.7 mg/L | Volume = 5–17 m3 | 70% COD removal | - | Scenedesmus almeriensis, diatoms, and green algae | Operating depths needed to be optimized. Nitrogen and phosphorus consumption was influenced by operating conditions. | [103] |
HRP | Real wastewater COD = 338 mg/L NH4+-N = 62 mg/L | Volume = 60 L | 79% COD removal 100% NH4+-N removal | - | - | Carrying out initial batches before the continuous system period was a fundamental strategy for the biomass. | [24] |
HRP | Real wastewater COD = 517 mg/L NH4+-N = 86 mg/L PO43–P = 43 mg/L | Volume = 80 L Illumination = 200 µmol/m2s HRT = 6 days | 89% COD removal 89% NH4+-N removal 23% TP removal | - | Chlorella and Diatoms | Increasing the retention time of solids in reactors favored granular formation and increased the sedimentation properties of the biomass. | [104] |
CFR | Synthetic wastewater COD = 300 mg/L NH4+-N = 100 mg/L PO43–P = 10 mg/L | Illumination = 1100 LUX HRT = 6 h | 95% COD removal 99% NH4+-N removal 46% TP removal | MLVSS = 4.3 g/L | Phormidium sp. | The internal separator facilitated hydraulic selection and selective sludge discharge. | [51] |
CFR | Synthetic wastewater COD = 300 mg/L NH4+-N = 152 mg/L PO43–P = 47 mg/L | Volume = 2 L Illumination = 200 µmol/m2s HRT = 24 h | 90% COD removal 94% NH4+-N removal 9% TP removal | MLVSS = 4 g/L | Scenedesmus sp.; Closterium sp.; Chlorella sp.; Diatoms; Oscillatoria sp. | Autotrophic bacteria, heterotrophic bacteria, algae, and PAOs coexisted in the reactor. | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satiro, J.; dos Santos Neto, A.G.; Marinho, T.; Sales, M.; Marinho, I.; Kato, M.T.; Simões, R.; Albuquerque, A.; Florencio, L. The Role of the Microalgae–Bacteria Consortium in Biomass Formation and Its Application in Wastewater Treatment Systems: A Comprehensive Review. Appl. Sci. 2024, 14, 6083. https://doi.org/10.3390/app14146083
Satiro J, dos Santos Neto AG, Marinho T, Sales M, Marinho I, Kato MT, Simões R, Albuquerque A, Florencio L. The Role of the Microalgae–Bacteria Consortium in Biomass Formation and Its Application in Wastewater Treatment Systems: A Comprehensive Review. Applied Sciences. 2024; 14(14):6083. https://doi.org/10.3390/app14146083
Chicago/Turabian StyleSatiro, Josivaldo, Antonio G. dos Santos Neto, Talita Marinho, Marcos Sales, Idayana Marinho, Mário T. Kato, Rogério Simões, Antonio Albuquerque, and Lourdinha Florencio. 2024. "The Role of the Microalgae–Bacteria Consortium in Biomass Formation and Its Application in Wastewater Treatment Systems: A Comprehensive Review" Applied Sciences 14, no. 14: 6083. https://doi.org/10.3390/app14146083
APA StyleSatiro, J., dos Santos Neto, A. G., Marinho, T., Sales, M., Marinho, I., Kato, M. T., Simões, R., Albuquerque, A., & Florencio, L. (2024). The Role of the Microalgae–Bacteria Consortium in Biomass Formation and Its Application in Wastewater Treatment Systems: A Comprehensive Review. Applied Sciences, 14(14), 6083. https://doi.org/10.3390/app14146083