Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Samples Preparation
2.3. Electron-Beam (EB) Irradiation and Dosimetry
2.4. Nanobubble Generation and Nanobubble and EB Process
2.5. Analytical Methods
2.6. Statistical Analysis
3. Results
3.1. Influence of Dose on DCF Degradation under EB Irradiation
3.2. Nanobubbling Effect
3.3. DCF Degradation in Aqueous Solution by EB Irradiation after Nanobubbling Process
3.4. Chemical Oxygen Demand (COD)
3.5. Intermediate Products and Degradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Characterization of Diclofenac Degradation Products—Experimental
Appendix B
Characterization of Diclofenac Degradation Products—Results
References
- Alfaro, R.A.; Davis, D.D. Diclofenac. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557879/ (accessed on 8 April 2024).
- Shamsudin, M.S.; Azha, S.F.; Ismail, S. A Review of Diclofenac Occurrences, Toxicology, and Potential Adsorption of Clay-Based Materials with Surfactant Modifier. J. Environ. Chem. Eng. 2022, 10, 107541. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Nugnes, R.; Orlo, E.; di Matteo, A.; De Felice, B.; Montanino, C.; Lavorgna, M.; Isidori, M. Diclofenac Eco-Geno-Toxicity in Freshwater Algae, Rotifers and Crustaceans. Environ. Pollut. 2023, 335, 122251. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Penha, L.C.; Rola, R.C.; dos Martinez, C.B.R.; dos Reis Martinez, C. Effects of Anti-Inflammatory Diclofenac Assessed by Toxicity Tests and Biomarkers in Adults and Larvae of Danio Rerio. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 242, 108955. [Google Scholar] [CrossRef]
- Gonzalez-Rey, M.; Bebianno, M.J. Effects of Non-Steroidal Anti-Inflammatory Drug (NSAID) Diclofenac Exposure in Mussel Mytilus Galloprovincialis. Aquat. Toxicol. 2014, 148, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Cuthbert, R.J.; Jakati, R.D.; Prakash, V. Diclofenac Is Toxic to the Himalayan Vulture Gyps Himalayensis. Bird Conserv. Int. 2011, 21, 72–75. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Bojanowska-Czajka, A.; Trojanowicz, M. Comparison of Different Advanced Degradation Processes for the Removal of the Pharmaceutical Compounds Diclofenac and Carbamazepine from Liquid Solutions. Environ. Sci. Pollut. Res. 2018, 25, 27704–27723. [Google Scholar] [CrossRef]
- Giri, R.R.; Ozaki, H.; Takayanagi, Y.; Taniguchi, S.; Takanami, R. Efficacy of Ultraviolet Radiation and Hydrogen Peroxide Oxidation to Eliminate Large Number of Pharmaceutical Compounds in Mixed Solution. Int. J. Environ. Sci. Technol. 2011, 8, 19–30. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, H.; Wang, Z.; Fu, Y.; Liu, Y. Kinetics and Reaction Mechanism of Photochemical Degradation of Diclofenac by UV-Activated Peroxymonosulfate. RSC Adv. 2021, 11, 6804–6817. [Google Scholar] [CrossRef]
- Hartmann, J.; Bartels, P.; Mau, U.; Witter, M.; Tümpling, W.V.; Hofmann, J.; Nietzschmann, E. Degradation of the Drug Diclofenac in Water by Sonolysis in Presence of Catalysts. Chemosphere 2008, 70, 453–461. [Google Scholar] [CrossRef]
- Salaeh, S.; Juretic Perisic, D.; Biosic, M.; Kusic, H.; Babic, S.; Lavrencic Stangar, U.; Dionysiou, D.D.; Loncaric Bozic, A. Diclofenac Removal by Simulated Solar Assisted Photocatalysis Using TiO2-Based Zeolite Catalyst; Mechanisms, Pathways and Environmental Aspects. Chem. Eng. J. 2016, 304, 289–302. [Google Scholar] [CrossRef]
- Tokumura, M.; Sugawara, A.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Masunaga, S. Comprehensive Study on Effects of Water Matrices on Removal of Pharmaceuticals by Three Different Kinds of Advanced Oxidation Processes. Chemosphere 2016, 159, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Sun, J.; Han, D.; Wei, F.; Mei, Q.; Wei, B.; Wang, X.; An, Z.; Bo, X.; Li, M.; et al. Ozonation of Diclofenac in the Aqueous Solution: Mechanism, Kinetics and Ecotoxicity Assessment. Environ. Res. 2020, 188, 109713. [Google Scholar] [CrossRef] [PubMed]
- Ziylan, A.; Dogan, S.; Agopcan, S.; Kidak, R.; Aviyente, V.; Ince, N.H. Sonochemical Degradation of Diclofenac: Byproduct Assessment, Reaction Mechanisms and Environmental Considerations. Environ. Sci. Pollut. Res. 2014, 21, 5929–5939. [Google Scholar] [CrossRef]
- Pérez-Estrada, L.A.; Malato, S.; Gernjak, W.; Agüera, A.; Thurman, E.M.; Ferrer, I.; Fernández-Alba, A.R. Photo-Fenton Degradation of Diclofenac: Identification of Main Intermediates and Degradation Pathway. Environ. Sci. Technol. 2005, 39, 8300–8306. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.; Freier, U.; Wecks, M.; Hohmann, S. Degradation of Diclofenac in Water by Heterogeneous Catalytic Oxidation with H2O2. Appl. Catal. B Environ. 2007, 70, 447–451. [Google Scholar] [CrossRef]
- Homlok, R.; Takács, E.; Wojnárovits, L. Elimination of Diclofenac from Water Using Irradiation Technology. Chemosphere 2011, 85, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Bojanowska-Czajka, A.; Kciuk, G.; Gumiela, M.; Borowiecka, S.; Nałęcz-Jawecki, G.; Koc, A.; Garcia-Reyes, J.F.; Ozbay, D.S.; Trojanowicz, M. Analytical, Toxicological and Kinetic Investigation of Decomposition of the Drug Diclofenac in Waters and Wastes Using Gamma Radiation. Environ. Sci. Pollut. Res. 2015, 22, 20255–20270. [Google Scholar] [CrossRef] [PubMed]
- Zhuan, R.; Wang, J. Degradation of Diclofenac in Aqueous Solution by Ionizing Radiation in the Presence of Humic Acid. Sep. Purif. Technol. 2020, 234, 116079. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Ye, L.; Zhang, Y.; Yu, J. Removal of Diclofenac from Surface Water by Electron Beam Irradiation Combined with a Biological Aerated Filter. Radiat. Phys. Chem. 2014, 105, 104–108. [Google Scholar] [CrossRef]
- Tominaga, F.K.; Dos Santos Batista, A.P.; Silva Costa Teixeira, A.C.; Borrely, S.I. Degradation of Diclofenac by Electron Beam Irradiaton: Toxicitiy Removal, by-Products Identification and Effect of Another Pharmaceutical Compound. J. Environ. Chem. Eng. 2018, 6, 4605–4611. [Google Scholar] [CrossRef]
- Singh, B.; Shukla, N.; Cho, C.H.; Kim, B.S.; Park, M.H.; Kim, K. Effect and Application of Micro- and Nanobubbles in Water Purification. Toxicol. Environ. Health Sci. 2021, 13, 9–16. [Google Scholar] [CrossRef]
- Wang, L.; Ali, J.; Wang, Z.; Oladoja, N.A.; Cheng, R.; Zhang, C.; Mailhot, G.; Pan, G. Oxygen Nanobubbles Enhanced Photodegradation of Oxytetracycline under Visible Light: Synergistic Effect and Mechanism. Chem. Eng. J. 2020, 388, 124227. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, K.; Cen, C.; Wu, X.; Mao, R.; Zheng, Y. Role of Bulk Nanobubbles in Removing Organic Pollutants in Wastewater Treatment. AMB Express 2021, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Jadhav, A.J.; Barigou, M. A Henry’s Law Method for Generating Bulk Nanobubbles. Nanoscale 2020, 12, 15869–15879. [Google Scholar] [CrossRef] [PubMed]
- Michailidi, E.D.; Bomis, G.; Varoutoglou, A.; Kyzas, G.Z.; Mitrikas, G.; Mitropoulos, A.C.; Efthimiadou, E.K.; Favvas, E.P. Bulk Nanobubbles: Production and Investigation of Their Formation/Stability Mechanism. J. Colloid Interface Sci. 2020, 564, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Alheshibri, M. The Effect of Ultrasound on Bulk and Surface Nanobubbles: A Review of the Current Status. Ultrason. Sonochem. 2021, 76, 105629. [Google Scholar] [CrossRef] [PubMed]
- Ghaani, M.R.; Kusalik, P.G.; English, N.J. Massive Generation of Metastable Bulk Nanobubbles in Water by External Electric Fields. Sci. Adv. 2020, 6, eaaz0094. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Kimura, Y.; Yamamoto, H.; Feng, X.; Hirano-Iwata, A.; Niwano, M. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores. J. Phys. Chem. B 2020, 124, 5067–5072. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Ye, S.; Zou, X.; Fei, R.; Hu, X.; Li, J. High-Efficiently Utilizing Micro-Nano Ozone Bubbles to Enhance Electro-Peroxone Process for Rapid Removal of Trace Pharmaceutical Contaminants from Hospital Wastewater. Water Res. 2024, 259, 121896. [Google Scholar] [CrossRef]
- Kovács, A.; Slezsák, I.; McLaughlin, W.L.; Miller, A. Oscillometric and Conductometric Analysis of Aqueous and Organic Dosimeter Solutions. Radiat. Phys. Chem. 1995, 46, 1211–1215. [Google Scholar] [CrossRef]
- Nisar, J.; Sayed, M.; Khan, F.U.; Khan, H.M.; Iqbal, M.; Khan, R.A.; Anas, M. Gamma—Irradiation Induced Degradation of Diclofenac in Aqueous Solution: Kinetics, Role of Reactive Species and Influence of Natural Water Parameters. J. Environ. Chem. Eng. 2016, 4, 2573–2584. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed.; Clesceri, L.S., Greenberg, A.E., Eaten, A.D., Eds.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Alkhuraiji, T.S. Advanced Oxidation Process Based on Water Radiolysis to Degrade and Mineralize Diclofenac in Aqueous Solutions. Sci. Total Environ. 2019, 688, 708–717. [Google Scholar] [CrossRef]
- Madureira, J.; Ceriani, E.; Pinhão, N.; Marotta, E.; Melo, R.; Cabo Verde, S.; Paradisi, C.; Margaça, F.M.A. Oxidation of Clofibric Acid in Aqueous Solution Using a Non-Thermal Plasma Discharge or Gamma Radiation. Chemosphere 2017, 187, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhou, F.; Zhao, Y.; Zhang, C.; Liu, F.; Bao, C.; Lin, M. Gamma Irradiation-Induced Sulfadiazine Degradation and Its Removal Mechanisms. Chem. Eng. J. 2012, 191, 256–262. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A.; Pyszynska, M.; Majkowska-Pilip, A.; Wawrowicz, K. Degradation of Selected Antidepressants Sertraline and Citalopram in Ultrapure Water and Surface Water Using Gamma Radiation. Processes 2022, 10, 63. [Google Scholar] [CrossRef]
- Yu, H.; Nie, E.; Xu, J.; Yan, S.; Cooper, W.J.; Song, W. Degradation of Diclofenac by Advanced Oxidation and Reduction Processes: Kinetic Studies, Degradation Pathways and Toxicity Assessments. Water Res. 2013, 47, 1909–1918. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (OH/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–887. [Google Scholar] [CrossRef]
EB (5 kGy) | Nano + EB (5 kGy) | |
---|---|---|
DCF | 96% | 99% |
Cl− | 53% | 49% |
29% | 35% | |
CO2 | <1% | <1% |
Sample | Peak | m/z [M + H]+ | Molecular Weight | Molecular Formula | Reference(s) |
---|---|---|---|---|---|
DCF | 296 | C14H11Cl2NO2 | |||
Nano + EB, flow | P1 | 134 | 133 | C9H11N | [22] |
P2 | 260 | 259 | C14H10ClNO2 | [10,39] | |
P3 | 312 | 311 | C14H11Cl2NO3 | [20,39] | |
P4 | 312 | 311 | C14H11Cl2NO3 | [20,39] | |
P5 | 294 | 293 | C14H9Cl2NO2 | [16] | |
EB | P* | 312 | 311 | C14H11Cl2NO3 | [18,20,39] |
P# | 152 | 151 | C8H9O2N | [22,39] | |
P$ | 134 | 133 | C9H11N | [22] | |
P^ | 126 | 125 | C6H4ClN | This work | |
P’ | 106 | 105 | C7H7N | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Madureira, J.; Justino, G.C.; Cabo Verde, S.; Chmielewska-Śmietanko, D.; Sudlitz, M.; Bulka, S.; Chajduk, E.; Mróz, A.; Wang, S.; et al. Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling. Appl. Sci. 2024, 14, 6028. https://doi.org/10.3390/app14146028
Sun Y, Madureira J, Justino GC, Cabo Verde S, Chmielewska-Śmietanko D, Sudlitz M, Bulka S, Chajduk E, Mróz A, Wang S, et al. Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling. Applied Sciences. 2024; 14(14):6028. https://doi.org/10.3390/app14146028
Chicago/Turabian StyleSun, Yongxia, Joana Madureira, Gonçalo C. Justino, Sandra Cabo Verde, Dagmara Chmielewska-Śmietanko, Marcin Sudlitz, Sylwester Bulka, Ewelina Chajduk, Andrzej Mróz, Shizong Wang, and et al. 2024. "Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling" Applied Sciences 14, no. 14: 6028. https://doi.org/10.3390/app14146028
APA StyleSun, Y., Madureira, J., Justino, G. C., Cabo Verde, S., Chmielewska-Śmietanko, D., Sudlitz, M., Bulka, S., Chajduk, E., Mróz, A., Wang, S., & Wang, J. (2024). Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling. Applied Sciences, 14(14), 6028. https://doi.org/10.3390/app14146028