Dynamic Spatio-Temporal Adaptive Graph Convolutional Recurrent Networks for Vacant Parking Space Prediction
Abstract
:1. Introduction
- (1)
- Dynamic Graph Generation
- (2)
- Spatio-temporal Feature Fusion
- (3)
- Dynamic Adaptive Ability
2. Literature Review
2.1. Mathematical Statistics
2.2. Machine Learning Methods
2.3. Spatio-Temporal Graph Neural Networks
3. Preliminaries
4. Model Architecture
4.1. Sequence Decomposition
4.2. Dynamic Parameter-Learning Module (DPLM)
4.3. Parameter-Learning Graph Convolution Recursive Module (PLGCRM)
4.4. Attention Module
5. Experiment
5.1. Selected Cities and Their Data Description
5.2. Experiment Preparation
5.3. Comparing Models
5.4. Experimental Results
5.5. Other Experimental Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bock, F.; Di Martino, S.; Origlia, A. Smart parking: Using a crowd of taxis to sense on-street parking space availability. IEEE Trans. Intell. Transp. Syst. 2019, 21, 496–508. [Google Scholar] [CrossRef]
- Xiao, X.; Jin, Z.; Hui, Y.; Xu, Y.; Shao, W. Hybrid spatial–temporal graph convolutional networks for on-street parking availability prediction. Remote Sens. 2021, 13, 3338. [Google Scholar] [CrossRef]
- Shao, F.; Shao, H.; Wang, D.; Lam, W.H. A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods. Phys. A Stat. Mech. Its Appl. 2024, 638, 129632. [Google Scholar] [CrossRef]
- Yang, S.; Ma, W.; Pi, X.; Qian, S. A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transp. Res. Part C Emerg. Technol. 2019, 107, 248–265. [Google Scholar] [CrossRef]
- Lablack, M.; Shen, Y. Spatio-temporal graph mixformer for traffic forecasting. Expert Syst. Appl. 2023, 228, 120281. [Google Scholar] [CrossRef]
- Xiao, X.; Peng, Z.; Lin, Y.; Jin, Z.; Shao, W.; Chen, R.; Cheng, N.; Mao, G. Parking Prediction in Smart Cities: A Survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10302–10326. [Google Scholar] [CrossRef]
- Shao, W.; Salim, F.D.; Gu, T.; Dinh, N.-T.; Chan, J. Traveling officer problem: Managing car parking violations efficiently using sensor data. IEEE Internet Things J. 2017, 5, 802–810. [Google Scholar] [CrossRef]
- Shao, W.; Tan, S.; Zhao, S.; Qin, K.K.; Hei, X.; Chan, J.; Salim, F.D. Incorporating lstm auto-encoders in optimizations to solve parking officer patrolling problem. ACM Trans. Spat. Algorithms Syst. 2020, 6, 1–21. [Google Scholar] [CrossRef]
- Guo, J.; He, H.; Sun, C. ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management. IEEE Trans. Veh. Technol. 2019, 68, 5309–5320. [Google Scholar] [CrossRef]
- Jose, A.; Vidya, V. A stacked long short-term memory neural networks for parking occupancy rate prediction. In Proceedings of the 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 18–19 June 2021. [Google Scholar] [CrossRef]
- Alquraish, M.; Abuhasel, K.A.; Alqahtani, A.S.; Khadr, M. SPI-based hybrid hidden Markov–GA, ARIMA–GA, and ARIMA–GA–ANN models for meteorological drought forecasting. Sustainability 2021, 13, 12576. [Google Scholar] [CrossRef]
- Wu, E.H.-K.; Sahoo, J.; Liu, C.-Y.; Jin, M.-H.; Lin, S.-H. Agile urban parking recommendation service for intelligent vehicular guiding system. IEEE Intell. Transp. Syst. Mag. 2014, 6, 35–49. [Google Scholar] [CrossRef]
- Zheng, L.; Xiao, X.; Sun, B.; Mei, D.; Peng, B. Short-term parking demand prediction method based on variable prediction interval. IEEE Access 2020, 8, 58594–58602. [Google Scholar] [CrossRef]
- Xiao, J.; Lou, Y.; Frisby, J. How likely am I to find parking?–A practical model-based framework for predicting parking availability. Transp. Res. Part B Methodol. 2018, 112, 19–39. [Google Scholar] [CrossRef]
- Rong, Y.; Xu, Z.; Yan, R.; Ma, X. Du-parking: Spatio-temporal big data tells you realtime parking availability. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar] [CrossRef]
- Peng, L.; Li, H. Searching parking spaces in urban environments based on non-stationary Poisson process analysis. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016. [Google Scholar] [CrossRef]
- Fan, J.; Hu, Q.; Xu, Y.; Tang, Z. Predicting vacant parking space availability: A long short-term memory approach. IEEE Intell. Transp. Syst. Mag. 2020, 14, 129–143. [Google Scholar] [CrossRef]
- Zheng, Y.; Rajasegarar, S.; Leckie, C. Parking availability prediction for sensor-enabled car parks in smart cities. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015. [Google Scholar] [CrossRef]
- Ismail, M.H.; Razak, T.R.; Gining, R.A.J.M.; Fauzi, S.S.M.; Abdul-Aziz, A. Predicting vehicle parking space availability using multilayer perceptron neural network. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1176. [Google Scholar] [CrossRef]
- Awan, F.M.; Saleem, Y.; Minerva, R.; Crespi, N. A comparative analysis of machine/deep learning models for parking space availability prediction. Sensors 2020, 20, 322. [Google Scholar] [CrossRef]
- Rajabioun, T.; Ioannou, P.A. On-Street and Off-Street Parking Availability Prediction Using Multivariate Spatiotemporal Models. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2913–2924. [Google Scholar] [CrossRef]
- Sampathkumar, A.; Maheswar, R.; Harshavardhanan, P.; Murugan, S.; Jayarajan, P.; Sivasankaran, V. Majority Voting based Hybrid Ensemble Classification Approach for Predicting Parking Availability in Smart City based on IoT. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Tekouabou, S.C.K.; Alaoui, E.A.A.; Cherif, W.; Silkan, H. Improving parking availability prediction in smart cities with IoT and ensemble-based model. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 687–697. [Google Scholar] [CrossRef]
- Zhao, D.; Ju, C.; Zhu, G.; Ning, J.; Luo, D.; Zhang, D.; Ma, H. MePark: Using Meters as Sensors for Citywide On-Street Parking Availability Prediction. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7244–7257. [Google Scholar] [CrossRef]
- Bilotta, S.; Palesi, L.A.I.; Nesi, P. Predicting free parking slots via deep learning in short-mid terms explaining temporal impact of features. IEEE Access 2023, 11, 101678–101693. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Feng, N.; Yang, C.; Zhai, J.; Zhang, S.; He, B.; Lin, J.; Zhang, X.; Du, X. Periodic weather-aware LSTM with event mechanism for parking behavior prediction. IEEE Trans. Knowl. Data Eng. 2021, 34, 5896–5909. [Google Scholar] [CrossRef]
- Zeng, C.; Ma, C.; Wang, K.; Cui, Z. Predicting vacant parking space availability: A DWT-Bi-LSTM model. Phys. A Stat. Mech. Its Appl. 2022, 599, 127498. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Hu, Q.; Krishnamoorthy, S.; Tang, Z. Predicting vacant parking space availability zone-wisely: A hybrid deep learning approach. Complex Intell. Syst. 2022, 8, 4145–4161. [Google Scholar] [CrossRef]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proc. AAAI Conf. Artif. Intell. 2019, 33, 922–929. [Google Scholar] [CrossRef]
- Choi, J.; Choi, H.; Hwang, J.; Park, N. Graph neural controlled differential equations for traffic forecasting. Proc. AAAI Conf. Artif. Intell. 2022, 36, 6367–6374. [Google Scholar] [CrossRef]
- Guo, K.; Hu, Y.; Qian, Z.; Sun, Y.; Gao, J.; Yin, B. Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1009–1018. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, K.; Wang, R. Parking space information prediction based on phrase construction and Elman neural network. J.-Tongji Univ. 2007, 35, 607. [Google Scholar]
- Vlahogianni, E.I.; Kepaptsoglou, K.; Tsetsos, V.; Karlaftis, M.G. A real-time parking prediction system for smart cities. J. Intell. Transp. Syst. 2016, 20, 192–204. [Google Scholar] [CrossRef]
- Liu, F.; Hao, F.; Hao, J.; Zhou, Y.; Xin, G. Parking prediction algorithm based on optimized LSTM model. J. Comput. Appl. 2019, 39, 65–69. [Google Scholar]
- Chen, G.; Zhang, S.; Weng, W.; Yang, W. Residual spatial-temporal graph convolutional neural network for on-street parking availability prediction. Int. J. Sens. Netw. 2023, 43, 246–257. [Google Scholar] [CrossRef]
- Gao, L.; Fan, W.; Hu, Z.; Jian, W. Prediction of Vacant Parking Spaces in Multiple Parking Lots: A DWT-ConvGRU-BRC Model. Appl. Sci. 2023, 13, 3791. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Liu, Y.; Zhou, J.; Xu, T.; Xiong, H. Semi-supervised city-wide parking availability prediction via hierarchical recurrent graph neural network. IEEE Trans. Knowl. Data Eng. 2020, 34, 3984–3996. [Google Scholar] [CrossRef]
- Geng, X.; Li, Y.; Wang, L.; Zhang, L.; Yang, Q.; Ye, J.; Liu, Y. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3656–3663. [Google Scholar] [CrossRef]
- Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17804–17815. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Huang, F.; Wang, J.; Chen, J.; Xiao, Y. Micn: Multi-scale local and global context modeling for long-term series forecasting. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2022; pp. 1–22. Available online: https://openreview.net/pdf?id=zt53IDUR1U (accessed on 23 May 2024).
- Guo, S.; Lin, Y.; Wan, H.; Li, X.; Cong, G. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 2021, 34, 5415–5428. [Google Scholar] [CrossRef]
- Ye, J.; Sun, L.; Du, B.; Fu, Y.; Xiong, H. Coupled layer-wise graph convolution for transportation demand prediction. Proc. AAAI Conf. Artif. Intell. 2021, 35, 4617–4625. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph wavenet for deep spatial-temporal graph modeling. arXiv 2019, arXiv:1906.00121. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar] [CrossRef]
- Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv 2019, arXiv:1905.09418. [Google Scholar] [CrossRef]
- Zurich Open Data Portal. Available online: https://data.stadt-zuerich.ch/dataset/parkleitsystem (accessed on 2 May 2023).
- Singapore Open Data Portal. Available online: https://beta.data.gov.sg/datasets/85/view (accessed on 2 May 2023).
- Li, J.; Qu, H.; You, L. An Integrated Approach for the Near Real-Time Parking Occupancy Prediction. IEEE Trans. Intell. Transp. Syst. 2022, 24, 3769–3778. [Google Scholar] [CrossRef]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Hochreiter, S. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar]
- Jiang, R.; Wang, Z.; Yong, J.; Jeph, P.; Chen, Q.; Kobayashi, Y.; Song, X.; Fukushima, S.; Suzumura, T. Spatio-temporal meta-graph learning for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence; Association for the Advancement of Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37. [Google Scholar] [CrossRef]
- Li, F.; Feng, J.; Yan, H.; Jin, G.; Yang, F.; Sun, F.; Jin, D.; Li, Y. Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Trans. Knowl. Discov. Data 2023, 17, 1–21. [Google Scholar] [CrossRef]
Dataset | Zurich | Guangzhou | Singapore |
---|---|---|---|
Start Time | 1 January 2023 | 1 June 2018 | 1 June 2022 |
End Time | 13 April 2023 | 30 June 2018 | 11 August 2022 |
Time Interval | 5 min | 5 min | 5 min |
Timesteps | 29,664 | 8640 | 20,736 |
Parking Lots Number | 33 | 18 | 122 |
Models | Zurich | Guangzhou | Singapore | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | |
HA | 9.29 | 17.78 | 29.59 | 18.19 | 38.23 | 20.36 | 31.1 | 53.35 | 18.89 |
LSTM | 8.66 | 17.04 | 44.78 | 17.01 | 23.75 | 26.03 | 24.26 | 73.53 | 8.36 |
ASTGCN | 4.57 | 10.13 | 18.47 | 8.28 | 17.03 | 3.65 | 4.9 | 8.74 | 3.16 |
DGCN | 7.41 | 12.18 | 28.2 | 21.48 | 36.19 | 12.49 | 5.04 | 7.86 | 3.22 |
MegaCRN | 4.37 | 9.26 | 17.46 | 7.78 | 15.17 | 3.48 | 5.06 | 9.83 | 3.14 |
STGNCD | 4.62 | 9.34 | 17.54 | 9.12 | 17.69 | 4.51 | 4.78 | 8.07 | 3.17 |
DCRNN | 4.65 | 10.69 | 16.39 | 10.16 | 17.72 | 5.11 | 5.97 | 11.71 | 3.79 |
AGCRN | 4.36 | 10.09 | 16.09 | 9.6 | 17.41 | 4.71 | 4.89 | 9.45 | 3.13 |
DGCRN | 4.59 | 9.84 | 16.78 | 9.21 | 16.32 | 5.58 | 5.58 | 10.51 | 3.59 |
Our | 3.61 | 8.66 | 13.54 | 6.87 | 14.21 | 2.88 | 4.16 | 8.06 | 2.71 |
Algorithms | MAE | RMSE | MAPE |
---|---|---|---|
DSTAGCRN | 3.61 | 8.66 | 13.54% |
W/o Attention | 3.64 | 8.8 | 13.80% |
W/o Trend | 3.63 | 8.67 | 14.33% |
W/o Embeddings | 3.69 | 8.73 | 15.42% |
W/o Dynamic | 4.36 | 10.09 | 16.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Fan, W.; Jian, W. Dynamic Spatio-Temporal Adaptive Graph Convolutional Recurrent Networks for Vacant Parking Space Prediction. Appl. Sci. 2024, 14, 5927. https://doi.org/10.3390/app14135927
Gao L, Fan W, Jian W. Dynamic Spatio-Temporal Adaptive Graph Convolutional Recurrent Networks for Vacant Parking Space Prediction. Applied Sciences. 2024; 14(13):5927. https://doi.org/10.3390/app14135927
Chicago/Turabian StyleGao, Liangpeng, Wenli Fan, and Wenliang Jian. 2024. "Dynamic Spatio-Temporal Adaptive Graph Convolutional Recurrent Networks for Vacant Parking Space Prediction" Applied Sciences 14, no. 13: 5927. https://doi.org/10.3390/app14135927
APA StyleGao, L., Fan, W., & Jian, W. (2024). Dynamic Spatio-Temporal Adaptive Graph Convolutional Recurrent Networks for Vacant Parking Space Prediction. Applied Sciences, 14(13), 5927. https://doi.org/10.3390/app14135927