Enhancement of Tricyclazole Analysis Efficiency in Rice Samples Using an Improved QuEChERS and Its Application in Residue: A Study from Unmanned Arial Spraying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Standard Solutions and Matrix-Matched Standard Solutions
2.3. LC-MS/MS Instrumental Condition
2.4. Comparison of Extraction Solvents and Partitioning Conditions
2.5. Comparison of Sample Purification Conditions
2.6. Established Preparation Conditions
2.7. Analytical Method Validation
2.8. Unmanned Arial Spraying in Paddy Fields
2.9. Sample Collection
3. Results
3.1. Establishment of MRM Conditions for Tricyclazole Detection
3.2. Establishment of Optimal Extraction and Partitioning Conditions
3.3. Impact of FA on Tricyclazole Recovery in QuEChERS Extraction Methods
3.4. Optimization of Purification Conditions
3.5. Analytical Method Validation of Tricyclazole Detection
3.6. Application in Residue Study from Unmanned Arial Spraying
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kunova, A.; Pizzatti, C.; Cortesi, P. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. Pest Manag. Sci. 2013, 69, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.H. Melanin biosynthesis inVerticillium dahliae: Dehydration and reduction reactions in cell-free homogenates. Exp. Mycol. 1982, 6, 171–179. [Google Scholar] [CrossRef]
- Thieron, M.; Pontzen, R.; Kurahashi, Y. Carpropamid: A rice fungicide with two modes of action. Pflanzenschutz-Nachrichten Bayer 1998, 51, 257–278. [Google Scholar]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, M.I.; Sajjad, A.; Shakeel, Q.; Hussain, A. Environmental and Health Effects of Pesticide Residues. In Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation Volume 2 Analysis; Inamuddin, Ahamed, M.I., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 311–336. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, Z.; Bird, N.; Gu, Y.-C.; Xu, Y.; Zhang, Z.-H.; Wu, X.-M. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Pest Manag. Sci. 2022, 78, 1582–1593. [Google Scholar] [CrossRef]
- Kim, C.J.; Yuan, X.; Kim, M.; Kyung, K.S.; Noh, H.H. Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying. Sci. Rep. 2023, 13, 10834. [Google Scholar] [CrossRef]
- Carreño Ruiz, M.; Bloise, N.; Guglieri, G.; D’Ambrosio, D. Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight. Drones 2022, 6, 329. [Google Scholar] [CrossRef]
- Løfstrøm, P.; Bruus, M.; Andersen, H.V.; Kjær, C.; Nuyttens, D.; Astrup, P. The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers. J. Pestic. Sci. 2013, 38, 129–138. [Google Scholar] [CrossRef]
- Khanal, D.; Dhital, A.; Neupane, A.; Paudel, K.; Shrestha, M.; Upadhyaya, N.; Bhandari, R.; Pandey, P. Insecticide residue analysis on vegetable crops through Rapid Bioassay of Pesticide Residue (RBPR) technique in Nepal. J. King Saud Univ. Sci. 2023, 35, 102671. [Google Scholar] [CrossRef]
- Liu, L.; Yuki, H.; Qin, Y.; Zhou, H.; Lin, J. Rapid Analysis of Multiresidual Pesticides in Agricultural Products by Gas Chromatography-mass Spectrometry. Chin. J. Anal. Chem. 2006, 34, 783–786. [Google Scholar] [CrossRef]
- Liu, L.-B.; Hashi, Y.; Qin, Y.-P.; Zhou, H.-X.; Lin, J.-M. Development of automated online gel permeation chromatography–gas chromatograph mass spectrometry for measuring multiresidual pesticides in agricultural products. J. Chromatogr. B 2007, 845, 61–68. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, H.J.; Kim, W.; Jin, J.S.; Abd El-Aty, A.M.; Shim, J.-H.; Shin, S.C. Multiresidue analysis of 47 pesticides in cooked wheat flour and polished rice by liquid chromatography with tandem mass spectrometry. Biomed. Chromatogr. 2009, 23, 434–442. [Google Scholar] [CrossRef]
- Pareja, L.; Fernández-Alba, A.R.; Cesio, V.; Heinzen, H. Analytical methods for pesticide residues in rice. TrAC Trends Anal. Chem. 2011, 30, 270–291. [Google Scholar] [CrossRef]
- Lee, J.; Kim, L.; Shin, Y.; Lee, J.; Lee, J.; Kim, E.; Moon, J.-K.; Kim, J.-H. Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using microbore GC-MS/MS. J. Agric. Food Chem. 2017, 65, 3387–3395. [Google Scholar] [CrossRef]
- Lee, J.; Shin, Y.; Lee, J.; Lee, J.; Kim, B.J.; Kim, J.-H. Simultaneous analysis of 310 pesticide multiresidues using UHPLC-MS/MS in brown rice, orange, and spinach. Chemosphere 2018, 207, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Mardani, Z.; Shakoori, A.; Peiravian, F.; Nouri, L.; Salamzadeh, J. Development of A Liquid Chromatography-Mass Spectrometry Technique for Evaluation of Multi-class Pesticides in Rice Samples. Iran. J. Pharm. Res. 2021, 20, 165–174. [Google Scholar]
- Kim, S.-H.; Lee, Y.-H.; Jeong, M.-J.; Gwon, D.-Y.; Lee, J.-H.; Shin, Y.; Choi, H. LC-MS/MS Method Minimizing Matrix Effect for the Analysis of Bifenthrin and Butachlor in Chinese Chives and Its Application for Residual Study. Foods 2023, 12, 1683. [Google Scholar] [CrossRef] [PubMed]
- EURL. European Union Reference Laboratories for Residues of Pesticides: Datapool. Available online: https://www.eurl-pesticides-datapool.eu/ (accessed on 7 August 2023).
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Yang, S.-H.; Shin, Y.; Choi, H. Simultaneous analytical method for 296 pesticide multiresidues in root and rhizome based herbal medicines with GC-MS/MS. PLoS ONE 2023, 18, e0288198. [Google Scholar] [CrossRef]
- Jeong, M.-J.; Kim, S.-H.; Eun, H.-R.; Lee, Y.-J.; Kim, S.-M.; Baek, J.-W.; Lee, Y.-H.; Shin, Y. Column Comparison for the Separation of Ferimzone Z and E Stereoisomers and Development of Trace Residue Analysis Method in Brown Rice Using HPLC-MS/MS. Kor. J. Environ. Agric. 2023, 42, 203–210. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Lee, J.; Lee, J.; Kim, E.; Liu, K.-H.; Lee, H.S.; Kim, J.-H. Validation of a multiresidue analysis method for 379 pesticides in human serum using liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2018, 66, 3550–3560. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Park, E.; Lee, J.; Lee, H.S.; Kim, J.-H. A Quantitative tandem mass spectrometry and scaled-down QuEChERS approach for simultaneous analysis of pesticide multiresidues in human urine. Molecules 2019, 24, 1330. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J.; Maštovská, K.; Yun, S.J. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. J. AOAC Int. 2005, 88, 630–638. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Lehotay, S.J.; Mastovska, K.; Dorweiler, K.J.; Leepipatpiboon, N. Extension of the QuEChERS method for pesticide residues in cereals to flaxseeds, peanuts, and doughs. J. Agric. Food Chem. 2010, 58, 5950–5958. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, B.; Coffey, A.; Arendt, E.K.; Furey, A. The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures. Talanta 2014, 129, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, C.; Lozano, A.; Agüera, A.; Girón, A.J.; Fernández-Alba, A.R. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 2011, 1218, 7634–7639. [Google Scholar] [CrossRef]
- Ellis, M.C.B.; Tuck, C.R.; Miller, P.C.H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles. Crop Prot. 1997, 16, 41–50. [Google Scholar] [CrossRef]
- De Schampheleire, M.; Nuyttens, D.; Baetens, K.; Cornelis, W.; Gabriels, D.; Spanoghe, P. Effects on pesticide spray drift of the physicochemical properties of the spray liquid. Precis. Agric. 2009, 10, 409–420. [Google Scholar] [CrossRef]
No. | Extraction Solvent | Partitioning Salts | Recovery ± sd 1 (%) |
---|---|---|---|
1 | MeCN | Original 2 | 86.7 ± 1.6 a 4 |
2 | MeCN | EN 15662 3 | 86.4 ± 1.3 a |
3 | MeCN/EA (1:1, v/v) | Original | 86.6 ± 2.0 a |
4 | MeCN/EA (1:1, v/v) | EN 15662 | 83.9 ± 1.0 ab |
5 | EA | Original | 81.6 ± 0.2 bc |
6 | EA | EN 15662 | 78.9 ± 0.7 c |
No. | Purification Method (Major Sorbents) | Recovery ± sd 1 (%) | Matrix Effect ± sd (%) |
---|---|---|---|
1 | dSPE (PSA, 25 mg) | 90.8 ± 2.1 b 2 | −12.9 ± 2.4 b |
2 | dSPE (C18, 25 mg) | 92.1 ± 1.3 b | −17.0 ± 1.9 b |
3 | dSPE (PSA, 25 mg and C18, 25 mg) | 96.7 ± 1.1 a | −6.1 ± 0.3 a |
4 | dSPE (PSA, 50 mg and C18, 50 mg) | 86.4 ± 1.4 c | −6.2 ± 2.6 a |
5 | PRiME HLB plus light | 90.9 ± 1.6 b | −12.8 ± 0.9 b |
LOQ (mg/kg) | Linearity (r2) | Recovery (RSD) (%) | ME (%) | ||
---|---|---|---|---|---|
0.01 mg/kg | 0.1 mg/kg | 2 mg/kg | |||
0.01 | 0.9996 | 95.2 (7.9) | 95.6 (2.8) | 94.7 (2.6) | −3.1 |
Plot | Adjuvant | Residue (mg/kg) | |||
---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | Mean ± sd 1 | ||
A | - | 0.27 | 0.35 | 0.43 | 0.35 ± 0.08 c 2 |
B | Cares | 0.71 | 0.57 | 0.78 | 0.68 ± 0.11 b |
C | Gondor | 1.45 | 2.01 | 1.35 | 1.60 ± 0.36 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Kim, S.-H.; Eun, H.-R.; Kim, S.-M.; Jeong, M.-J.; Baek, J.-W.; Lee, Y.-H.; Noh, H.H.; Shin, Y. Enhancement of Tricyclazole Analysis Efficiency in Rice Samples Using an Improved QuEChERS and Its Application in Residue: A Study from Unmanned Arial Spraying. Appl. Sci. 2024, 14, 5607. https://doi.org/10.3390/app14135607
Lee Y-J, Kim S-H, Eun H-R, Kim S-M, Jeong M-J, Baek J-W, Lee Y-H, Noh HH, Shin Y. Enhancement of Tricyclazole Analysis Efficiency in Rice Samples Using an Improved QuEChERS and Its Application in Residue: A Study from Unmanned Arial Spraying. Applied Sciences. 2024; 14(13):5607. https://doi.org/10.3390/app14135607
Chicago/Turabian StyleLee, Ye-Jin, So-Hee Kim, Hye-Ran Eun, Su-Min Kim, Mun-Ju Jeong, Jae-Woon Baek, Yoon-Hee Lee, Hyun Ho Noh, and Yongho Shin. 2024. "Enhancement of Tricyclazole Analysis Efficiency in Rice Samples Using an Improved QuEChERS and Its Application in Residue: A Study from Unmanned Arial Spraying" Applied Sciences 14, no. 13: 5607. https://doi.org/10.3390/app14135607
APA StyleLee, Y.-J., Kim, S.-H., Eun, H.-R., Kim, S.-M., Jeong, M.-J., Baek, J.-W., Lee, Y.-H., Noh, H. H., & Shin, Y. (2024). Enhancement of Tricyclazole Analysis Efficiency in Rice Samples Using an Improved QuEChERS and Its Application in Residue: A Study from Unmanned Arial Spraying. Applied Sciences, 14(13), 5607. https://doi.org/10.3390/app14135607