Practical Estimation of Machine Tool Spindle Dynamics for Maintenance Decision Making
Abstract
:1. Introduction
1.1. Background
1.2. Advanced Methods for Modal Analysis Data Collection
- Stationary test equipment is complex and takes up valuable space on the machine table.
- Portable test equipment requires the attention of a skilled operator, which is not scalable for repetitive data collection tasks.
- Tests are time-consuming to perform.
- Tests interfere with production cycles.
2. Materials and Methods
2.1. Testing Methods
2.1.1. Validation of the Mechanical Impulse Generator
2.1.2. Static Spindle Test
2.1.3. Dynamic Spindle Test
2.2. Mechanical Impulse Generator
2.3. Experimental Setup
2.4. Experimental Modal Analysis
2.4.1. Frequency Response Function
2.4.2. Coherence
2.4.3. Modal Characterization
3. Results
3.1. Validation of the Mechanical Impulse Generator
3.2. Static Spindle Test
3.3. Dynamic Spindle Test
4. Discussion
4.1. Practical Usage of the IG Device
4.2. Oscillations Observed in the IG Force Profile
4.3. Impact Tip Material Selection
4.4. Contact Effects at Tool Tip
4.5. Speed Dependent Dynamics
4.6. Application to Spindle Maintenance Decision Making
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, D.S. The Costs and Benefits of Advanced Maintenance in Manufacturing. 2018. Available online: https://www.nist.gov/publications/advanced-maintenance-manufacturing-costs-and-benefits (accessed on 9 May 2024). [CrossRef]
- Decaix, G.; Gentzel, M.; Luse, A.; Neise, P.; Thibert, J. A Smarter Way to Digitize Maintenance and Reliability. 2021. Available online: https://www.mckinsey.com/business-functions/operations/our-insights/a-smarter-way-to-digitize-maintenance-and-reliability (accessed on 9 May 2024).
- Breidenthal, J.; O’Sullivan, E. Industrial Analytics: Maintenance Gains without Adoption Pains. 2019. Available online: https://www.bain.com/globalassets/noindex/2019/bain_brief_industrial_analytics.pdf (accessed on 9 May 2024).
- Abele, E.; Altintas, Y.; Brecher, C. Machine tool spindle units. CIRP Ann. Manuf. Technol. 2010, 59, 781–802. [Google Scholar] [CrossRef]
- BS ISO 10816-1:1996; Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Non-Rotating Parts. ISO: Geneva, Switzerland, 1995.
- ISO/TR 17243-1; Machine Tool Spindles—Evaluation of Machine Tool Spindle Vibrations by Measurements on Spindle Housing: Part 1: Spindles with Rolling Element Bearings and Integral Drives Operating at Speeds between 600 min−1 and 30,000 min−1. ISO: Geneva, Switzerland, 2014.
- Tlusty, J.; Polacek, M. Beispiele der Behandlung der Selbsterregten Schwingung der Werkzeugmaschinen, FoKoMa; Hanser Verlag: Munich, Germany, 1957. [Google Scholar]
- Tobias, S.A.; Fiswick, W. Theory of Regenerative Machine Tool Chatter. Engineer 1958, 205, 199–205. Available online: https://www.vibraction.fr/images/stories/Documents/1erePresentationLobesTobias.pdf (accessed on 9 May 2024).
- Altintas, Y.; Weck, M. Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 2004, 53, 619–642. [Google Scholar] [CrossRef]
- Altintas, Y.; Cao, Y. Virtual Design and Optimization of Machine Tool Spindles. CIRP Ann. 2005, 54, 379–382. [Google Scholar] [CrossRef]
- Jardine, A.K.S.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Iglesias, A.; Taner Tunç, L.; Özsahin, O.; Franco, O.; Munoa, J.; Budak, E. Alternative experimental methods for machine tool dynamics identification: A review. Mech. Syst. Signal Process 2022, 170, 1–19. [Google Scholar] [CrossRef]
- Schwartz, B.; Richardson, M. Experimental modal analysis. In CSI Reliabilty Week; Vibrant Technology: Jamestown, CA, USA, 1999; pp. 1–12. [Google Scholar] [CrossRef]
- Vogl, G.W.; Donmez, M.A. A defect-driven diagnostic method for machine tool spindles. CIRP Ann. Manuf. Technol. 2015, 64, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Bediz, B.; Arda Gozen, B.; Korkmaz, E.; Burak Ozdoganlar, O. Dynamics of ultra-high-speed (UHS) spindles used for micromachining. Int. J. Mach. Tools Manuf. 2014, 87, 27–38. [Google Scholar] [CrossRef]
- Wiederkehr, P.; Wilck, I.; Siebrecht, T. Determination of the dynamic behaviour of micro-milling tools at higher spindle speeds using ball-shooting tests for the application in process simulations. CIRP Ann. 2020, 69, 97–100. [Google Scholar] [CrossRef]
- Tlalolini, D.; Ritou, M.; Rabréau, C.; Le Loch, S.; Furet, B. Modeling and characterization of an electromagnetic system for the estimation of Frequency Response Function of spindle. Mech. Syst. Signal Process 2018, 104, 294–304. [Google Scholar] [CrossRef]
- Iglesias, A.; Munoa, J.; Ramírez, C.; Ciurana, J.; Dombovari, Z. FRF Estimation through Sweep Milling Force Excitation (SMFE). Procedia CIRP 2016, 46, 504–507. [Google Scholar] [CrossRef]
- Altintas, Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781107001480. [Google Scholar]
- Schmitz, T.L.; Smith, K.S. Machining Dynamics; Springer: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Munoa, J.; Beudaert, X.; Dombovari, Z.; Altintas, Y.; Budak, E.; Brecher, C.; Stepan, G. Chatter suppression techniques in metal cutting. CIRP Ann. Manuf. Technol. 2016, 65, 785–808. [Google Scholar] [CrossRef]
- TM-ImpactHammers-0823. PCB Piezotronics; Amphenol Corporation: New York, NY, USA, 2023; pp. 1–12. Available online: https://www.pcb.com/sensors-for-test-measurement/impact-hammers (accessed on 9 May 2024).
- Jensen, S.A.; Shin, Y.C. Stability Analysis in Face Milling Operations, Part 2: Experimental Validation and Influencing Factors. ASME J. Manuf. Sci. Eng. 1999, 121, 606–614. [Google Scholar] [CrossRef]
- Lin, C.W.; Tu, J.F.; Kamman, J. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. Int. J. Mach. Tools Manuf. 2003, 43, 1035–1050. [Google Scholar] [CrossRef]
- Chen, J.S.; Hwang, Y.W. Centrifugal force induced dynamics of a motorized high-speed spindle. Int. J. Adv. Manuf. Technol. 2006, 30, 10–19. [Google Scholar] [CrossRef]
- Cao, H.; Holkup, T.; Altintas, Y. A comparative study on the dynamics of high speed spindles with respect to different preload mechanisms. Int. J. Adv. Manuf. Technol. 2011, 57, 871–883. [Google Scholar] [CrossRef]
- Rusu, F.; Tudose, C.; Tudose, L. A new proof of rule of thumb regarding clearance variation with temperature in two tapered rolling bearings in O-arrangement. Acta Tech. Napoc. 2013, 56, 789–794. [Google Scholar]
- Ritou, M.; Rabréau, C.; Le Loch, S.; Furet, B.; Dumur, D. Influence of spindle condition on the dynamic behavior. CIRP Ann. 2018, 67, 419–422. [Google Scholar] [CrossRef]
Test Condition | Mode 1 | Mode 2 | Mode 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hz | kg | Ns2/m | % | Hz | kg | Ns2/m | % | Hz | kg | Ns2/m | % | |
Condition 1 | 179 | 3.9 × 10−3 | 124 | 2.8 | 189 | 1.3 × 10−2 | 448 | 1.3 | 231 | 2.3 × 10−3 | 120 | 2.6 |
Condition 2 | 180 | 4.1 × 10−3 | 132 | 2.8 | 190 | 8.4 × 10−3 | 304 | 1.8 | 232 | 1.8 × 10−3 | 99 | 3.0 |
Condition 3 | 178 | 2.7 × 10−3 | 85 | 3.4 | 190 | 1.5 × 10−2 | 523 | 1.1 | 231 | 1.6 × 10−3 | 84 | 2.6 |
Spindle Speed RPM | Mode 1 | |||
---|---|---|---|---|
Hz | kg | Ns2/m | % | |
0 | 1099 | 2.9 × 10−5 | 35.0 | 3.2 |
240 | 1105 | 2.6 × 10−5 | 31.5 | 2.4 |
1000 | 1104 | 2.2 × 10−5 | 27.2 | 2.2 |
10,000 | 1101 | 4.2 × 10−5 | 51.0 | 2.6 |
Test Condition | Mode 1 | Mode 2 | Mode 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hz | kg | Ns2/m | % | Hz | kg | Ns2/m | % | Hz | kg | Ns2/m | % | |
Measured | 180 | 3.8 × 10−3 | 122 | 2.8 | 190 | 1.0 × 10−2 | 368 | 1.6 | 231 | 1.8 × 10−3 | 96 | 2.8 |
Fitted | 178 | 2.7 × 10−3 | 85 | 3.4 | 190 | 1.4 × 10−2 | 524 | 1.1 | 231 | 1.6 × 10−3 | 84 | 2.6 |
Spindle Condition | Mode 1 | Mode 2 | ||||||
---|---|---|---|---|---|---|---|---|
Hz | kg | Ns2/m | % | Hz | kg | Ns2/m | % | |
Before spindle failure | 569 | 3.2 × 10−7 | 0.1035 | 4.22 | 1380 | 3.6 × 10−8 | 0.0689 | 3.33 |
After spindle repair | 808 | 1.3 × 10−7 | 0.0843 | 5.57 | 1338 | 2.4× 10−8 | 0.0425 | 8.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, P.; DePavia, J.M.; Veldhuis, S.C. Practical Estimation of Machine Tool Spindle Dynamics for Maintenance Decision Making. Appl. Sci. 2024, 14, 4266. https://doi.org/10.3390/app14104266
Chin P, DePavia JM, Veldhuis SC. Practical Estimation of Machine Tool Spindle Dynamics for Maintenance Decision Making. Applied Sciences. 2024; 14(10):4266. https://doi.org/10.3390/app14104266
Chicago/Turabian StyleChin, Patrick, Jose M. DePavia, and Stephen C. Veldhuis. 2024. "Practical Estimation of Machine Tool Spindle Dynamics for Maintenance Decision Making" Applied Sciences 14, no. 10: 4266. https://doi.org/10.3390/app14104266
APA StyleChin, P., DePavia, J. M., & Veldhuis, S. C. (2024). Practical Estimation of Machine Tool Spindle Dynamics for Maintenance Decision Making. Applied Sciences, 14(10), 4266. https://doi.org/10.3390/app14104266