Selected Chromatographic Methods for Determining the Biological Activity of Substances
Abstract
:1. Introduction
- -
- -
- -
- -
2. Biomimetic Chromatographic System
2.1. Stationary Phases in Biomimetic Chromatographic Systems
2.2. Mobile Phases in Biomimetic Chromatographic Systems
3. Chromatography in the Determination of Lipophilicity of Compounds
- -
- Chromatography is a dynamic process, whereas the extraction process is a static equilibrium process;
- -
- The chromatographic process of substance distribution between the stationary and the mobile phases takes place on a much larger surface than in the extraction method (as in the body);
- -
- The C-18 phase has a more structured structure than liquid n-octanol (the structure of the stationary C-18 phase is more similar to the structure of the cell membrane than n-octanol).
- -
- CHI logD = 0.054 ChI − 1.467—obtained on the basis of 98 compounds.
- -
- Chrom logD = 0.088 ChI − 2—obtained on the basis of 40,000 compounds.
- -
- The Chrom logD values are about two times higher than the logD values of octanol water.
4. Chromatography in the Determination of Pharmacokinetic Parameters of Substances
- -
- If Vd < 5 dm3, then the drug is in the blood and it is distributed only in the circulatory system.
- -
- If 10 dm3 < Vd < 20 dm3, this means that the drug penetrates the extracellular fluid;
- -
- If 25 dm3 < Vd < 30 dm3, the drug is in the intracellular fluid (ICFV);
- -
- If it is approx. 40 dm3, the drug is distributed in all the bodily fluids;
- -
- If it is approx. 100 dm3, this means that the drug accumulates in tissues and organs.
4.1. Determination of the Distribution of Substances in Tissues
- -
- The pH of the plasma—it can alter the ionisation of many compounds;
- -
- The drug concentration—different saturation of the binding sites;
- -
- The protein concentration—disease-related changes, age;
- -
- The affinity of the drug molecules for protein-binding sites (physicochemical properties);
- -
- The presence of other substances in the body that bind to proteins at the same active sites;
- -
- Exogenous (drugs, toxins), endogenous (urea, bilirubin, fatty acids, hormones).
4.1.1. Determination of KD Values Using Zonal Elution
4.1.2. Determination of KD Values Using Frontal Analysis
4.1.3. Determination of KD Values against a Standard
4.1.4. Chromatography as an Analytical Method for the Determination of Interactions of Substances with Protein
5. Cell Membrane Chromatography (CMC)
6. Bioassay
- Stage I:
- Chromatography. This stage encompasses the preparation of the sample for analysis, application of the test samples to the chromatographic plate, and development of the chromatogram, resulting in a separation of the sample components.
- Stage II:
- Bioassays. These make it possible to determine which substances on the chromatographic plate exhibit a particular type of biological activity.
- Stage III:
- Identification of biologically active substances. This is based on a standard or on coupling of TLC with UV/VIS, MS, or NMR, IR detection.
- -
- The composition of the bacterial suspension/enzyme concentration.
- -
- The incubation temperature.
- -
- The incubation time.
- -
- The composition of the mobile phase used to develop the chromatogram.
- -
- Additives to the mobile phase, such as acetic acid or formic acid.
- -
- The pH value of the mobile phase.
- -
- The type of stationary phase.
6.1. Microbial Detection—Determination of Antimicrobial Properties by Bioautography
6.2. Microbiochemical Detection
Detection of Enzyme Inhibitors by Bioassay
7. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Pai, S.; Hebbar, A.; Selvaraj, S. A Critical Look at Challenges and Future Scopes of Bioactive Compounds and Their Incorporations in the Food, Energy, and Pharmaceutical Sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef]
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What Is a Bioactive Compound? A Combined Definition for a Preliminary Consensus. Int. J. Nutr. Food Sci. 2014, 3, 174. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Yuan, H. Quantitative Study of Electrostatic and Steric Effects on Physicochemical Property and Biological Activity. J. Mol. Graph. Model. 2006, 24, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Garner, C.W.; Behal, F.J. Effect of pH on Substrate and Inhibitor Kinetic Constants of Human Liver Alanine Aminopeptidase. Evidence for Two Ionizable Active Center Groups. Biochemistry 1975, 14, 5084–5088. [Google Scholar] [CrossRef] [PubMed]
- Bloom, B.M.; Laubach, G.D. The Relationship Between Chemical Structure and Pharmacological Activity. Annu. Rev. Pharmacol. 1962, 2, 67–108. [Google Scholar] [CrossRef]
- Sakai, M.; Nagayasu, K.; Shibui, N.; Andoh, C.; Takayama, K.; Shirakawa, H.; Kaneko, S. Prediction of Pharmacological Activities from Chemical Structures with Graph Convolutional Neural Networks. Sci. Rep. 2021, 11, 525. [Google Scholar] [CrossRef]
- Selassie, C.D.; Shusterman, A.J.; Kapur, S.; Verma, R.P.; Zhang, L.; Hansch, C. On the Toxicity of Phenols to Fast Growing Cells. A QSAR Model for a Radical-Based Toxicity. J. Chem. Soc. Perkin Trans. 1999, 2, 2729–2733. [Google Scholar] [CrossRef]
- Gehler, J.; Cantz, M.; O’Brien, J.F.; Tolksdorf, M.; Spranger, J. Mannosidosis: Clinical and Biochemical Findings. Birth Defects Orig. Artic. Ser. 1975, 11, 269–272. [Google Scholar]
- Robak, W.; Apostoluk, W.; Ochromowicz, K. Linear Solvation Energy Relationship (LSER) Analysis of Liquid–Liquid Distribution Constants of 8-Hydroxyquinoline and Its Derivatives. J. Chem. Eng. Data 2011, 56, 3971–3983. [Google Scholar] [CrossRef]
- Rudrapal, M.; Egbuna, C. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches; Elsevier: San Diego, CA, USA, 2022; ISBN 978-0-323-91433-8. [Google Scholar]
- Abraham, M.H.; Acree, W.E. Descriptors for the Prediction of Partition Coefficients of 8-Hydroxyquinoline and Its Derivatives. Sep. Sci. Technol. 2014, 49, 2135–2141. [Google Scholar] [CrossRef]
- Poole, C.F.; Atapattu, S.N. Determination of Physicochemical Properties of Small Molecules by Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2020, 1626, 461427. [Google Scholar] [CrossRef] [PubMed]
- Smart, K.; Garcia, E.; Oloyede, B.; Fischer, R.; Golden, T.D.; Acree, W.E.; Abraham, M.H. The Partition of Organic Compounds from Water into the Methyl Isobutyl Ketone Extraction Solvent with Updated Abraham Model Equation. Phys. Chem. Liq. 2021, 59, 431–441. [Google Scholar] [CrossRef]
- Czaplicki, S. Chromatography in Bioactivity Analysis of Compounds. In Column Chromatography; Martin, D., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-1074-3. [Google Scholar]
- Quinones-Torrelo, C.; Martin-Biosca, Y.; Martinez-pla, J.; Sagrado, S.; Villanueva-Camanas, R.; Medina-Hernandez, M. QRAR Models for Central Nervous System Drugs Using Biopartitioning Micellar Chromatography. Mini-Rev. Med. Chem. 2002, 2, 145–161. [Google Scholar] [CrossRef]
- Wang, S.; Yang, G.; Zhang, H.; Liu, H.; Li, Z. QRAR Models for Cardiovascular System Drugs Using Biopartitioning Micellar Chromatography. J. Chromatogr. B 2007, 846, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Stępnik, K. Biomimetic Chromatographic Studies Combined with the Computational Approach to Investigate the Ability of Triterpenoid Saponins of Plant Origin to Cross the Blood–Brain Barrier. Int. J. Mol. Sci. 2021, 22, 3573. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Kawczak, P.; Greber, K.E.; Kapica, H.; Nowakowska, J.; Bączek, T. Application of Reversed-Phase Thin Layer Chromatography and QSRR Modelling for Prediction of Protein Binding of Selected β-Blockers. J. Pharm. Biomed. Anal. 2019, 176, 112767. [Google Scholar] [CrossRef]
- Ciura, K.; Dziomba, S. Application of Separation Methods for in Vitro Prediction of Blood–Brain Barrier Permeability—The State of the Art. J. Pharm. Biomed. Anal. 2020, 177, 112891. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.; Nunhuck, S.; Bevan, C.; Abraham, M.H.; Reynolds, D.P. Fast Gradient HPLC Method to Determine Compounds Binding to Human Serum Albumin. Relationships with Octanol/Water and Immobilized Artificial Membrane Lipophilicity. J. Pharm. Sci. 2003, 92, 2236–2248. [Google Scholar] [CrossRef] [PubMed]
- Hage, D.S.; Anguizola, J.A.; Jackson, A.J.; Matsuda, R.; Papastavros, E.; Pfaunmiller, E.; Tong, Z.; Vargas-Badilla, J.; Yoo, M.J.; Zheng, X. Chromatographic Analysis of Drug Interactions in the Serum Proteome. Anal. Methods 2011, 3, 1449. [Google Scholar] [CrossRef]
- Hage, D.S. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications. Clin. Chem. 2017, 63, 1083–1093. [Google Scholar] [CrossRef]
- Matsuda, R.; Li, Z.; Zheng, X.; Hage, D.S. Analysis of Multi-Site Drug–Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin. J. Chromatogr. A 2015, 1408, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Beeram, S.; Li, Z.; Zheng, X.; Hage, D.S. Kinetic Analysis of Drug–Protein Interactions by Affinity Chromatography. Drug Discov. Today Technol. 2015, 17, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Mahran, E.; Keusgen, M.; Morlock, G.E. New Planar Assay for Streamlined Detection and Quantification of β-Glucuronidase Inhibitors Applied to Botanical Extracts. Anal. Chim. Acta X 2020, 4, 100039. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.L. Biomimetic Chromatography—A Novel Application of the Chromatographic Principles. Anal. Sci. Adv. 2022, 3, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Ulenberg, S.; Ciura, K.; Georgiev, P.; Pastewska, M.; Ślifirski, G.; Król, M.; Herold, F.; Bączek, T. Use of Biomimetic Chromatography and in Vitro Assay to Develop Predictive GA-MLR Model for Use in Drug-Property Prediction among Anti-Depressant Drug Candidates. Microchem. J. 2022, 175, 107183. [Google Scholar] [CrossRef]
- Legerská, B.; Chmelová, D.; Ondrejovič, M.; Miertuš, S. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors Detection—A Review. Crit. Rev. Anal. Chem. 2022, 52, 275–293. [Google Scholar] [CrossRef]
- Choma, I.M.; Grzelak, E.M. Bioautography Detection in Thin-Layer Chromatography. J. Chromatogr. A 2011, 1218, 2684–2691. [Google Scholar] [CrossRef] [PubMed]
- Andrić, F.; Bajusz, D.; Rácz, A.; Šegan, S.; Héberger, K. Multivariate Assessment of Lipophilicity Scales—Computational and Reversed Phase Thin-Layer Chromatographic Indices. J. Pharm. Biomed. Anal. 2016, 127, 81–93. [Google Scholar] [CrossRef]
- Chmiel, T.; Mieszkowska, A.; Kempińska-Kupczyk, D.; Kot-Wasik, A.; Namieśnik, J.; Mazerska, Z. The Impact of Lipophilicity on Environmental Processes, Drug Delivery and Bioavailability of Food Components. Microchem. J. 2019, 146, 393–406. [Google Scholar] [CrossRef]
- Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M.J. Thin Layer Chromatography in Drug Discovery Process. J. Chromatogr. A 2017, 1520, 9–22. [Google Scholar] [CrossRef]
- Sobańska, A.W. RP-18 TLC Retention Data and Calculated Physico-Chemical Parameters as Predictors of Soil-Water Partition and Bioconcentration of Organic Sunscreens. Chemosphere 2021, 279, 130527. [Google Scholar] [CrossRef] [PubMed]
- Pidgeon, C.; Venkataram, U.V. Immobilized Artificial Membrane Chromatography: Supports Composed of Membrane Lipids. Anal. Biochem. 1989, 176, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Ermondi, G.; Vallaro, M.; Caron, G. Learning How to Use IAM Chromatography for Predicting Permeability. Eur. J. Pharm. Sci. 2018, 114, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Grumetto, L.; Carpentiero, C.; Barbato, F. Lipophilic and Electrostatic Forces Encoded in IAM-HPLC Indexes of Basic Drugs: Their Role in Membrane Partition and Their Relationships with BBB Passage Data. Eur. J. Pharm. Sci. 2012, 45, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Ermondi, G.; Caron, G.; Verzele, D.; Lynen, F. Into the First Biomimetic Sphingomyelin Stationary Phase: Suitability in Drugs’ Biopharmaceutic Profiling and Block Relevance Analysis of Selectivity. Eur. J. Pharm. Sci. 2021, 156, 105585. [Google Scholar] [CrossRef] [PubMed]
- Beigi, F.; Qing, Y.; Lundahl, P. Immobilized-Liposome Chromatographic Analysis of Drug Partitioning into Lipid Bilayers. J. Chromatogr. A 1995, 704, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Lundahl, P.; Yang, Q. Liposome Chromatography: Liposomes Immobilized in Gel Beads as a Stationary Phase for Aqueous Column Chromatography. J. Chromatogr. A 1991, 544, 283–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, X.; Xu, B.; Cheng, S.; Tang, C.; Duan, H.; Xiao, X.; Du, W.; Xu, L. Preparation and Characterization of Micro-Cell Membrane Chromatographic Column with Silica-Based Porous Layer Open Tubular Capillary as Cellular Membrane Carrier. Anal. Bioanal. Chem. 2016, 408, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.S.; Habicht, K.-L.; Dossou, K.S.S.; Shimmo, R.; Wainer, I.W.; Moaddel, R. Multiple Protein Stationary Phases: A Review. J. Chromatogr. B 2014, 968, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, J.; Xu, D.; He, L.; Qu, J.-H.; Wang, Q.; Crommen, J.; Jiang, Z. Development of Biomimetic Phospholipid Membrane Chromatography for Drug Discovery: A Comprehensive Review. TrAC Trends Anal. Chem. 2024, 171, 117512. [Google Scholar] [CrossRef]
- Pabst, T.M.; Thai, J.; Hunter, A.K. Evaluation of Recent Protein A Stationary Phase Innovations for Capture of Biotherapeutics. J. Chromatogr. A 2018, 1554, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, M.; Moaddel, R.; Wainer, I.W. The Development and Characterization of Protein-Based Stationary Phases for Studying Drug–Protein and Protein–Protein Interactions. J. Chromatogr. A 2011, 1218, 8791–8798. [Google Scholar] [CrossRef] [PubMed]
- Subirats, X.; Bosch, E.; Rosés, M. Retention of Ionisable Compounds on High-Performance Liquid Chromatography XVII. J. Chromatogr. A 2007, 1138, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Subirats, X.; Bosch, E.; Rosés, M. Retention of Ionisable Compounds on High-Performance Liquid Chromatography. XV. Estimation of the pH Variation of Aqueous Buffers with the Change of the Acetonitrile Fraction of the Mobile Phase. J. Chromatogr. A 2004, 1059, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyńska, M.; Voelkel, A. Stability of Simulated Body Fluids Such as Blood Plasma, Artificial Urine and Artificial Saliva. Microchem. J. 2017, 134, 197–201. [Google Scholar] [CrossRef]
- Shokry, D.S.; Waters, L.J.; Parkes, G.M.B.; Mitchell, J.C. Incorporating Physiologically Relevant Mobile Phases in Micellar Liquid Chromatography for the Prediction of Human Intestinal Absorption. Biomed. Chromatogr. 2018, 32, e4351. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.J.; Shokry, D.S.; Parkes, G.M.B.; Mitchell, J.C. The Use of Bile Salt Micelles for the Prediction of Human Intestinal Absorption. J. Pharm. Sci. 2016, 105, 3611–3614. [Google Scholar] [CrossRef]
- Rambla-Alegre, M. Basic Principles of MLC. Chromatogr. Res. Int. 2012, 2012, 898520. [Google Scholar] [CrossRef]
- Rukhadze, M.D.; Bezarashvili, G.S.; Kutkhashvili, M.G.; Sigua, K.I. Investigation of Artificial Biomembrane Systems in Biopartitioning Micellar Chromatography by Method of Mathematical Design. Biomed. Chromatogr. 2005, 19, 169–177. [Google Scholar] [CrossRef]
- Tsopelas, F.; Danias, P.; Pappa, A.; Tsantili-Kakoulidou, A. Biopartitioning Micellar Chromatography under Different Conditions: Insight into the Retention Mechanism and the Potential to Model Biological Processes. J. Chromatogr. A 2020, 1621, 461027. [Google Scholar] [CrossRef]
- Escuder-Gilabert, L.; Martínez-Pla, J.J.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Biopartitioning Micellar Separation Methods: Modelling Drug Absorption. J. Chromatogr. B 2003, 797, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, B.; Abed, S.N.; Al-Attraqchi, O.; Kuche, K.; Tekade, R.K. Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In Dosage Form Design Parameters; Elsevier: Amsterdam, The Netherlands, 2018; pp. 731–755. ISBN 978-0-12-814421-3. [Google Scholar]
- Fujita, T.; Iwasa, J.; Hansch, C. A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc. 1964, 86, 5175–5180. [Google Scholar] [CrossRef]
- Hawker, D. A Theoretical Basis for Collander Equations. Toxicol. Environ. Chem. 1994, 45, 87–95. [Google Scholar] [CrossRef]
- Soczewiński, E.; Wachtmeister, C.A. The Relation between the Composition of Certain Ternary Two-Phase Solvent Systems and RM Values. J. Chromatogr. A 1962, 7, 311–320. [Google Scholar] [CrossRef]
- Valkó, K.; Slégel, P. New Chromatographic Hydrophobicity Index (Φ0) Based on the Slope and the Intercept of the Log K′ versus Organic Phase Concentration Plot. J. Chromatogr. A 1993, 631, 49–61. [Google Scholar] [CrossRef]
- Valkó, K.; Bevan, C.; Reynolds, D. Chromatographic Hydrophobicity Index by Fast-Gradient RP-HPLC: A High-Throughput Alternative to Log P/Log D. Anal. Chem. 1997, 69, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.L. Application of Biomimetic HPLC to Estimate in Vivo Behavior of Early Drug Discovery Compounds. Future Drug Discov. 2019, 1, FDD11. [Google Scholar] [CrossRef]
- Valko, K.; Du, C.; Bevan, C.; Reynolds, D.; Abraham, M. Rapid Method for the Estimation of Octanol/Water Partition Coefficient (Log Poct) from Gradient RP-HPLC Retention and a Hydrogen Bond Acidity Term (Sigma alpha2H). Curr. Med. Chem. 2001, 8, 1137–1146. [Google Scholar] [CrossRef]
- Wiczling, P.; Kubik, Ł.; Kaliszan, R. PH Effects on Chromatographic Retention Modes. In Analytical Separation Science; Pino, V., Anderson, J.L., Berthod, A., Stalcup, A.M., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 263–278. ISBN 978-3-527-33374-5. [Google Scholar]
- Subirats, X.; Rosés, M.; Bosch, E. On the Effect of Organic Solvent Composition on the pH of Buffered HPLC Mobile Phases and the p Ka of Analytes—A Review. Sep. Purif. Rev. 2007, 36, 231–255. [Google Scholar] [CrossRef]
- Kaliszan, R.; Haber, P.; Bączek, T.; Siluk, D.; Valko, K. Lipophilicity and pKa Estimates from Gradient High-Performance Liquid Chromatography. J. Chromatogr. A 2002, 965, 117–127. [Google Scholar] [CrossRef]
- Kawczak, P.; Vander Heyden, Y.; Nasal, A.; Bączek, T.; Drabczyñska, A.; Kieć-Kononowicz, K.; Kaliszan, R. Micellar Liquid Chromatography for Lipophilicity Determination of New Biologically Active 1,3-purinodiones. J. Sep. Sci. 2010, 33, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, I.; Studziński, M.; Malinowski, H. Changes of 1,2,4-Triazole Retention and Lipophilicity Descriptor Values in RP-TLC and MLC—TLC Systems in the Presence of an External Magnetic Field. JPC-J. Planar Chromatogr.-Mod. TLC 2017, 30, 106–112. [Google Scholar] [CrossRef]
- Breyer, E.D.; Strasters, J.K.; Khaledi, M.G. Quantitative Retention-Biological Activity Relationship Study by Micellar Liquid Chromatography. Anal. Chem. 1991, 63, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, M.G.; Breyer, E.D. Quantitation of Hydrophobicity with Micellar Liquid Chromatography. Anal. Chem. 1989, 61, 1040–1047. [Google Scholar] [CrossRef]
- González, V.; Rodríguez-Delgado, M.A.; Sánchez, M.J.; García-Montelongo, F. Solute-Micelle Association Constants and Correlation of Octanol-Water Coefficients with Hydrophobicity for Polycyclic Aromatic Hydrocarbons by Micellar Chromatography. Chromatographia 1992, 34, 627–635. [Google Scholar] [CrossRef]
- Stępnik, K.E. A Concise Review of Applications of Micellar Liquid Chromatography to Study Biologically Active Compounds. Biomed. Chromatogr. 2017, 31, e3741. [Google Scholar] [CrossRef] [PubMed]
- Stępnik, K.E.; Malinowska, I. The Use of Biopartitioning Micellar Chromatography and Immobilized Artificial Membrane Column for in Silico and in Vitro Determination of Blood–Brain Barrier Penetration of Phenols. J. Chromatogr. A 2013, 1286, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Green, D.V.S.; Luscombe, C.N.; Hill, A.P. Getting Physical in Drug Discovery II: The Impact of Chromatographic Hydrophobicity Measurements and Aromaticity. Drug Discov. Today 2011, 16, 822–830. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Macdonald, S.J.F.; Young, R.J.; Pickett, S.D. The Impact of Aromatic Ring Count on Compound Developability: Further Insights by Examining Carbo- and Hetero-Aromatic and -Aliphatic Ring Types. Drug Discov. Today 2011, 16, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.P.; Young, R.J. Getting Physical in Drug Discovery: A Contemporary Perspective on Solubility and Hydrophobicity. Drug Discov. Today 2010, 15, 648–655. [Google Scholar] [CrossRef]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Volume of Distribution in Drug Design: Miniperspective. J. Med. Chem. 2015, 58, 5691–5698. [Google Scholar] [CrossRef] [PubMed]
- Hollósy, F.; Valkó, K.; Hersey, A.; Nunhuck, S.; Kéri, G.; Bevan, C. Estimation of Volume of Distribution in Humans from High Throughput HPLC-Based Measurements of Human Serum Albumin Binding and Immobilized Artificial Membrane Partitioning. J. Med. Chem. 2006, 49, 6958–6971. [Google Scholar] [CrossRef]
- Valko, K.L.; Ivanova-Berndt, G.; Beswick, P.; Kindey, M.; Ko, D. Application of Biomimetic HPLC to Estimate Lipophilicity, Protein and Phospholipid Binding of Potential Peptide Therapeutics. ADMET DMPK 2018, 6, 162–175. [Google Scholar] [CrossRef]
- Hage, D.S.; Anguizola, J.; Barnaby, O.; Jackson, A.; Yoo, M.J.; Papastavros, E.; Pfaunmiller, E.; Sobansky, M.; Tong, Z. Characterization of Drug Interactions with Serum Proteins by Using High-Performance Affinity Chromatography. Curr. Drug Metab. 2011, 12, 313–328. [Google Scholar] [CrossRef]
- Li, Z.; Beeram, S.R.; Bi, C.; Suresh, D.; Zheng, X.; Hage, D.S. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine. Adv. Protein Chem. Struct. Biol. 2016, 102, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Hage, D.S.; Tweed, S.A. Recent Advances in Chromatographic and Electrophoretic Methods for the Study of Drug-Protein Interactions. J. Chromatogr. B Biomed. Sci. Appl. 1997, 699, 499–525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D. Chromatography Studies on Bio-Affinity of Nine Ligands of A1- Adrenoceptor to a1D Subtypes Overexpressed in Cell Membrane. Sci. China Ser. C 2004, 47, 376. [Google Scholar] [CrossRef]
- Esteve-Romero, J.; Albiol-Chiva, J.; Peris-Vicente, J. A Review on Development of Analytical Methods to Determine Monitorable Drugs in Serum and Urine by Micellar Liquid Chromatography Using Direct Injection. Anal. Chim. Acta 2016, 926, 1–16. [Google Scholar] [CrossRef]
- He, L.; Wang, S.; Geng, X. Coating and Fusing Cell Membranes onto a Silica Surface and Their Chromatographic Characteristics. Chromatographia 2001, 54, 71–76. [Google Scholar] [CrossRef]
- He, L.; Yang, G.; Geng, X. Enzymatic Activity and Chromatographic Characteristics of the Cell Membrane Immobilized on Silica Surface. Chin. Sci. Bull. 1999, 44, 826–831. [Google Scholar] [CrossRef]
- Ma, W.; Yang, L.; Lv, Y.; Fu, J.; Zhang, Y.; He, L. Determine Equilibrium Dissociation Constant of Drug-Membrane Receptor Affinity Using the Cell Membrane Chromatography Relative Standard Method. J. Chromatogr. A 2017, 1503, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Ren, J.; Wang, S.; He, L. Cell Membrane Chromatography Competitive Binding Analysis for Characterization of α1A Adrenoreceptor Binding Interactions. Anal. Bioanal. Chem. 2011, 400, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Zeng, A.; Yuan, B.; Zhu, F.; Zhao, L.; He, L.; Yang, G. Cell Membrane Chromatography Correlated with Functional Assay for Ligand–β-Adrenergic Receptor Affinities. Chromatographia 2009, 69, 1373–1377. [Google Scholar] [CrossRef]
- Duan, L.; Guo, L.; Wang, L.; Yin, Q.; Zhang, C.-M.; Zheng, Y.-G.; Liu, E.-H. Application of Metabolomics in Toxicity Evaluation of Traditional Chinese Medicines. Chin. Med. 2018, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Hou, J.; He, L.; Yang, G. Evaluation of Drug-Muscarinic Receptor Affinities Using Cell Membrane Chromatography and Radioligand Binding Assay in Guinea Pig Jejunum Membrane. Acta Pharmacol. Sin. 2005, 26, 113–116. [Google Scholar] [CrossRef]
- Du, H.; He, J.; Wang, S.; He, L. Investigation of Calcium Antagonist–L-Type Calcium Channel Interactions by a Vascular Smooth Muscle Cell Membrane Chromatography Method. Anal. Bioanal. Chem. 2010, 397, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, D.; Li, J.; Che, D.; Liu, R.; Zhang, J.; Zhang, Y. Interactions between Histamine H1 Receptor and Its Antagonists by Using Cell Membrane Chromatography Method. J. Pharm. Pharmacol. 2015, 67, 1567–1574. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, Y.; Li, J.; Liu, R.; Che, D.; He, L. Analysis of Drug Interactions with Dopamine Receptor by Frontal Analysis and Cell Membrane Chromatography. Chromatographia 2015, 78, 649–654. [Google Scholar] [CrossRef]
- Hou, X.; Wang, S.; Zhang, T.; Ma, J.; Zhang, J.; Zhang, Y.; Lu, W.; He, H.; He, L. Recent Advances in Cell Membrane Chromatography for Traditional Chinese Medicines Analysis. J. Pharm. Biomed. Anal. 2014, 101, 141–150. [Google Scholar] [CrossRef]
- Bu, Y.; Hu, Q.; Bao, T.; Xie, X.; Wang, S. Recent Advances in Cell Membrane-Coated Technology for Drug Discovery from Natural Products. TrAC Trends Anal. Chem. 2022, 151, 116601. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, A.; Zhou, X.; Liu, Q.; Nan, Y.; Guan, Y.; Kong, L.; Han, Y.; Sun, H.; Yan, G. An Integrated Chinmedomics Strategy for Discovery of Effective Constituents from Traditional Herbal Medicine. Sci. Rep. 2016, 6, 18997. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Sun, Y.; Fu, J.; Kong, L.; Han, S. Screening Anti-allergic Components of Astragali Radix Using LAD2 Cell Membrane Chromatography Coupled Online with UHPLC-ESI-MS/MS Method. Biomed. Chromatogr. 2017, 31, e3806. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cao, Y.; Lv, D.; Zhu, Z.; Zhang, J.; Chai, Y. Comprehensive Two-Dimensional HepG2/Cell Membrane Chromatography/Monolithic Column/Time-of-Flight Mass Spectrometry System for Screening Anti-Tumor Components from Herbal Medicines. J. Chromatogr. A 2012, 1242, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Huang, J.; Hou, J.; Wang, S. Screening Epidermal Growth Factor Receptor Antagonists from Radix et Rhizoma Asari by Two-dimensional Liquid Chromatography. J. Sep. Sci. 2014, 37, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Han, S.; Zhang, T.; Zhang, J.; Wang, S.; Hou, J. Screening Active Compounds Acting on the Epidermal Growth Factor Receptor from Radix Scutellariae via Cell Membrane Chromatography Online Coupled with HPLC/MS. J. Pharm. Biomed. Anal. 2012, 62, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Guo, Y.; Dai, B.; Wang, C.; He, L. High-expression EGFR/Cell Membrane Chromatography-online-high-performance Liquid Chromatography/Mass Spectrometry: Rapid Screening of EGFR Antagonists from Semen Strychni. Rapid Commun. Mass Spectrom. 2012, 26, 2027–2032. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, M.; Zhang, Y.; Zhang, J.; He, L. EGFR/Cell Membrane Chromatography-Online-High Performance Liquid Chromatography/Mass Spectrometry Method for Screening EGFR Antagonists from Radix Angelicae Pubescentis. Sci. China Chem. 2010, 53, 2357–2362. [Google Scholar] [CrossRef]
- Han, S.-L.; Zhang, T.; Huang, J.; Hu, Z.-G.; Wang, S.-C. Screening Target Components from Radix Salviae Miltiorrhiae Using an EGFR/CMC-Online-HPLC/MS Method. Anal. Methods 2012, 4, 1078. [Google Scholar] [CrossRef]
- Sun, M.; Ma, W.; Guo, Y.; Hu, Z.; He, L. Simultaneous Screening of Four Epidermal Growth Factor Receptor Antagonists from Curcuma Longa via Cell Membrane Chromatography Online Coupled with HPLC–MS. J. Sep. Sci. 2013, 36, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Hu, Q.; Huang, J.; Han, S.; Wang, S. Screening Active Compounds from Corydalis Yanhusuo by Combining High Expression VEGF Receptor HEK293 Cell Membrane Chromatography with HPLC–ESI–IT–TOF–MSn Method. J. Pharm. Biomed. Anal. 2017, 136, 134–139. [Google Scholar] [CrossRef]
- Zhang, T.; Han, S.; Huang, J.; Wang, S. Combined Fibroblast Growth Factor Receptor 4 Cell Membrane Chromatography Online with High Performance Liquid Chromatography/Mass Spectrometry to Screen Active Compounds in Brassica Albla. J. Chromatogr. B 2013, 912, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ding, Y.; An, H.; Feng, L.; Wang, S. Screening Anti-tumor Compounds from Ligusticum Wallichii Using Cell Membrane Chromatography Combined with High-performance Liquid Chromatography and Mass Spectrometry. J. Sep. Sci. 2015, 38, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.-J.; He, L.-C.; Yang, G.-D. Screening, Analysis and in Vitro Vasodilatation of Effective Components from Ligusticum Chuanxiong. Life Sci. 2005, 78, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Dou, L.; Wang, X.; Xue, H.; Song, Y.; Li, X. Screening β1AR Inhibitors by Cell Membrane Chromatography and Offline UPLC/MS Method for Protecting Myocardial Ischemia. J. Pharm. Biomed. Anal. 2015, 115, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhou, M.; Jiang, Q.; Wang, S.; He, L. A Vascular Smooth Muscle/Cell Membrane Chromatography–Offline-Gas Chromatography/Mass Spectrometry Method for Recognition, Separation and Identification of Active Components from Traditional Chinese Medicines. J. Chromatogr. A 2009, 1216, 7081–7087. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, N.; Ma, J.; Zhu, Y.; Wang, M.; Wang, X.; Zhang, P. A Platelet/CMC Coupled with Offline UPLC-QTOF-MS/MS for Screening Antiplatelet Activity Components from Aqueous Extract of Danshen. J. Pharm. Biomed. Anal. 2016, 117, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, M.; Zhang, Y.; Du, H.; He, L. A New A431/Cell Membrane Chromatography and Online High Performance Liquid Chromatography/Mass Spectrometry Method for Screening Epidermal Growth Factor Receptor Antagonists from Radix Sophorae Flavescentis. J. Chromatogr. A 2010, 1217, 5246–5252. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Ren, J.; Wang, S.; He, L. Establishment of a High Expression of α1A Adrenergic Receptor Cell Membrane Chromatography-RPLC Method for Screening Target Components from Radix Caulophylli. Chromatographia 2010, 72, 635–640. [Google Scholar] [CrossRef]
- Wu, X.; Chen, X.; Jia, D.; Cao, Y.; Gao, S.; Guo, Z.; Zerbe, P.; Chai, Y.; Diao, Y.; Zhang, L. Characterization of Anti-Leukemia Components from Indigo Naturalis Using Comprehensive Two-Dimensional K562/Cell Membrane Chromatography and in Silico Target Identification. Sci. Rep. 2016, 6, 25491. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Che, D.; Zhang, T.; Liu, R.; Cao, J.; Wang, J.; Zhao, T.; Ma, P.; Dong, X.; He, L. Saikosaponin A Inhibits Compound 48/80-Induced Pseudo-Allergy via the Mrgprx2 Pathway in Vitro and in Vivo. Biochem. Pharmacol. 2018, 148, 147–154. [Google Scholar] [CrossRef]
- Han, S.; Lv, Y.; Xue, W.; Cao, J.; Cui, R.; Zhang, T. Screening Anaphylactic Components of MaiLuoNing Injection by Using Rat Basophilic leukemia-2H3 Cell Membrane Chromatography Coupled with HPLC–ESI-TOF-MS. J. Sep. Sci. 2016, 39, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Goodall, R.R.; Levi, A.A. A Microchromatographic Method for the Detection and Approximate Determination of the Different Penicillins in a Mixture. Nature 1946, 158, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Lautner, H. Zum Papierchromatographischen Nachweis von Penicillinpräparaten. Arch. Pharm. 1961, 294, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, B.J.R.; Coronelli, C.; Binaghi, A. Mikrobiologischer Nachweis von Antibiotika auf Dünnschichtchromatogrammen. Experientia 1961, 17, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J. Planar Chromatography. Anal. Chem. 2008, 80, 4253–4267. [Google Scholar] [CrossRef] [PubMed]
- Morlock, G.; Schwack, W. Hyphenations in Planar Chromatography. J. Chromatogr. A 2010, 1217, 6600–6609. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F. Instrumental Thin-Layer Chromatography; Elsevier: Waltham, MA, USA, 2014; ISBN 978-0-12-417223-4. [Google Scholar]
- Rios, J.L.; Recio, M.C.; Villar, A. Screening Methods for Natural Products with Antimicrobial Activity: A Review of the Literature. J. Ethnopharmacol. 1988, 23, 127–149. [Google Scholar] [CrossRef]
- Meyers, E.; Smith, D.A. Bioautography of Antibiotic Spread-Layer Chromatograms. J. Chromatogr. A 1964, 14, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Choma, I.; Jesionek, W. TLC-Direct Bioautography as a High Throughput Method for Detection of Antimicrobials in Plants. Chromatography 2015, 2, 225–238. [Google Scholar] [CrossRef]
- Mehl, A.; Morlock, G.E. Strong Antibacterial Effects in Animal-Derived Food Detected via Non-Target Planar Bioassays. Food Chem. Adv. 2023, 2, 100283. [Google Scholar] [CrossRef]
- Cretu, G.C.; Morlock, G.E. Analysis of Anthocyanins in Powdered Berry Extracts by Planar Chromatography Linked with Bioassay and Mass Spectrometry. Food Chem. 2014, 146, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.; Dimkić, I.; Trifković, J.; Berić, T.; Vovk, I.; Milojković-Opsenica, D.; Stanković, S. Antimicrobial Activity of Serbian Propolis Evaluated by Means of MIC, HPTLC, Bioautography and Chemometrics. PLoS ONE 2016, 11, e0157097. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, W.; Majer-Dziedzic, B.; Horváth, G.; Móricz, Á.M.; Choma, I.M. Screening of Antibacterial Compounds in Thymus Vulgaris L. Tincture Using Thin-Layer Chromatography—Direct Bioautography and Liquid Chromatography—Tandem Mass Spectrometry Techniques. JPC-J. Planar Chromatogr.-Mod. TLC 2017, 30, 131–135. [Google Scholar] [CrossRef]
- Jamshidi-Aidji, M.; Morlock, G.E. From Bioprofiling and Characterization to Bioquantification of Natural Antibiotics by Direct Bioautography Linked to High-Resolution Mass Spectrometry: Exemplarily Shown for Salvia Miltiorrhiza Root. Anal. Chem. 2016, 88, 10979–10986. [Google Scholar] [CrossRef] [PubMed]
- Orłowska, M.; Kowalska, T.; Sajewicz, M.; Jesionek, W.; Choma, I.M.; Majer-Dziedzic, B.; Szymczak, G.; Waksmundzka-Hajnos, M. A Comparison of Antibacterial Activity of Selected Thyme (Thymus) Species by Means of the Dot Blot Test with Direct Bioautographic Detection. J. AOAC Int. 2015, 98, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Krüzselyi, D.; Vetter, J.; Ott, P.G.; Móricz, Á.M. Investigation of Antibacterial Components of Button Mushroom (Agaricus Bisporus) by Direct Bioautography and HPLC–DAD–MS. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 298–302. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Szeremeta, D.; Knaś, M.; Długosz, E.; Ott, P.G.; Kowalska, T.; Sajewicz, M. Antibacterial Potential of the Cistus Incanus L. Phenolics as Studied with Use of Thin-Layer Chromatography Combined with Direct Bioautography and in Situ Hydrolysis. J. Chromatogr. A 2018, 1534, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Móricz, Á.M.; Ott, P.G.; Böszörményi, A.; Lemberkovics, É.; Mincsovics, E.; Tyihák, E. Bioassay-Guided Isolation and Identification of Antimicrobial Compounds from Thyme Essential Oil by Means of Overpressured Layer Chromatography, Bioautography and GC–MS. Chromatographia 2012, 75, 991–999. [Google Scholar] [CrossRef]
- Grzelak, E.M.; Majer-Dziedzic, B.; Choma, I.M.; Pilorz, K.M. Development of a Novel Direct Bioautography-Thin-Layer Chromatography Test: Optimization of Growth Conditions for Gram-Positive Bacteria, Bacillus Subtilis. J. AOAC Int. 2013, 96, 386–391. [Google Scholar] [CrossRef]
- Jesionek, W.; Fornal, E.; Majer-Dziedzic, B.; Móricz, Á.M.; Nowicky, W.; Choma, I.M. Investigation of the Composition and Antibacterial Activity of UkrainTM Drug Using Liquid Chromatography Techniques. J. Chromatogr. A 2016, 1429, 340–347. [Google Scholar] [CrossRef]
- Kovács, J.K.; Horváth, G.; Kerényi, M.; Kocsis, B.; Emődy, L.; Schneider, G. A Modified Bioautographic Method for Antibacterial Component Screening against Anaerobic and Microaerophilic Bacteria. J. Microbiol. Methods 2016, 123, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.-L.; Liu, T.; Wang, S.-Y.; Ji, X.-Y.; Mu, Q. TLC-Bioautography Directed Isolation of Antibacterial Compounds from Active Fractionation of Ferula Ferulioides. Nat. Prod. Res. 2019, 33, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, W.; Choma, I.M.; Majer-Dziedzic, B.; Malinowska, I. Screening bacterial and radical scavenging properties of chosen plant extracts using thin-layer chromatography–direct bioautography. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 2882–2891. [Google Scholar] [CrossRef]
- Jesionek, W.; Grzelak, E.; Majer-Dziedzic, B.; Choma, I. Thin-Layer Chromatography—Direct Bioautography for the Screening of Antimicrobial Properties of Plant Extracts. J. Planar Chromatogr.-Mod. TLC 2013, 26, 109–113. [Google Scholar] [CrossRef]
- McGaw, L.J.; Bagla, V.P.; Steenkamp, P.A.; Fouche, G.; Olivier, J.; Eloff, J.N.; Myer, M.S. Antifungal and Antibacterial Activity and Chemical Composition of Polar and Non-Polar Extracts of Athrixia Phylicoides Determined Using Bioautography and HPLC. BMC Complement. Altern. Med. 2013, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Mincsovics, E.; Ott, P.; Alberti, Á.; Böszörményi, A.; Héthelyi, É.; Szőke, É.; Kéry, Á.; Lemberkovics, É.; Móricz, Á. In-Situ Clean-up and OPLC Fractionation of Chamomile Flower Extract to Search Active Components by Bioautography. J. Planar Chromatogr.-Mod. TLC 2013, 26, 172–179. [Google Scholar] [CrossRef]
- Móricz, Á.; Szarka, S.; Ott, P.; Kertesy, D.; Héthelyi, É.; Szőke, É.; Tyihák, E. Application of Direct Bioautography and SPME-GC-MS for the Study of Antibacterial Chamomile Ingredients. J. Planar Chromatogr.-Mod. TLC 2012, 25, 220–224. [Google Scholar] [CrossRef]
- Jesionek, W.; Móricz, Á.M.; Alberti, Á.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-Direct Bioautography as a Bioassay Guided Method for Investigation of Antibacterial Compounds in Hypericum perforatum L. J. AOAC Int. 2015, 98, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Lomarat, P.; Phanthong, P.; Wongsariya, K.; Chomnawang, M.T.; Bunyapraphatsara, N. Bioautography-Guided Isolation of Antibacterial Compounds of Essential Oils from Thai Spices against Histamine-Producing Bacteria. Pak. J. Pharm. Sci. 2013, 26, 473–477. [Google Scholar]
- Grzelak, E.M.; Hwang, C.; Cai, G.; Nam, J.-W.; Choules, M.P.; Gao, W.; Lankin, D.C.; McAlpine, J.B.; Mulugeta, S.G.; Napolitano, J.G.; et al. Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-Tuberculosis Lead Compounds from Natural Sources. ACS Infect. Dis. 2016, 2, 294–301. [Google Scholar] [CrossRef]
- Jesionek, W.; Móricz, Á.M.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-Direct Bioautography and LC/MS as Complementary Methods in Identification of Antibacterial Agents in Plant Tinctures from the Asteraceae Family. J. AOAC Int. 2015, 98, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Móricz, A.M.; Szarka, S.; Ott, P.G.; Héthelyi, E.B.; Szoke, E.; Tyihák, E. Separation and Identification of Antibacterial Chamomile Components Using OPLC, Bioautography and GC-MS. Med. Chem. 2012, 8, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Móricz, A.M.; Ott, P.G.; Alberti, A.; Böszörményi, A.; Lemberkovics, E.; Szoke, E.; Kéry, A.; Mincsovics, E. Applicability of Preparative Overpressured Layer Chromatography and Direct Bioautography in Search of Antibacterial Chamomile Compounds. J. AOAC Int. 2013, 96, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Móricz, Á.M.; Häbe, T.T.; Böszörményi, A.; Ott, P.G.; Morlock, G.E. Tracking and Identification of Antibacterial Components in the Essential Oil of Tanacetum vulgare L. by the Combination of High-Performance Thin-Layer Chromatography with Direct Bioautography and Mass Spectrometry. J. Chromatogr. A 2015, 1422, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Cheng, Z.; Wu, T. TLC Bioautography on Screening of Bioactive Natural Products: An Update Review. Curr. Anal. Chem. 2020, 16, 545–556. [Google Scholar] [CrossRef]
- Choma, I.M.; Jesionek, W. Effect-Directed Detection in Chromatography. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2017; p. B9780124095472126794. ISBN 978-0-12-409547-2. [Google Scholar]
- Marston, A. Thin-Layer Chromatography with Biological Detection in Phytochemistry. J. Chromatogr. A 2011, 1218, 2676–2683. [Google Scholar] [CrossRef] [PubMed]
- Morlock, G.E. Chromatography Combined with Bioassays and Other Hyphenations—The Direct Link to the Compound Indicating the Effect. In ACS Symposium Series; Jayprakasha, G.K., Patil, B.S., Pellati, F., Eds.; American Chemical Society: Washington, DC, USA, 2014; Volume 1185, pp. 101–121. ISBN 978-0-8412-2976-1. [Google Scholar]
- Curry, A.S.; Mercier, M. Detection and Identification of Monoamine Oxidase Inhibitors in Biological Samples. Nature 1970, 228, 281–282. [Google Scholar] [CrossRef]
- Liang, J.-B.; Yang, Z.-D.; Shu, Z.-M.; Yu, C.-C. A Rapid Thin-Layer Chromatography Bioautographic Method for Detecting the Monoamine Oxidase Inhibitors in Plants. Nat. Prod. Res. 2014, 28, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Bastidas, E.; Rodríguez, M.; Lucena, E.; Castillo, A.; Hasegawa, M. Aporphine Alkaloids from Guatteria Stenopetala (Annonaceae). Nat. Prod. Commun. 2008, 3, 1934578X0800300408. [Google Scholar] [CrossRef]
- Darwish, R.S.; Shawky, E.; Hammoda, H.M.; Harraz, F.M. A New Thin-Layer Chromatography–Direct Bioautography Assay for the Qualitative and Quantitative Determination of Peroxidase Inhibitors in Plant Extracts. JPC-J. Planar Chromatogr.-Mod. TLC 2020, 33, 3–9. [Google Scholar] [CrossRef]
- Ramallo, I.A.; Zacchino, S.A.; Furlan, R.L.E. A Rapid TLC Autographic Method for the Detection of Xanthine Oxidase Inhibitors and Superoxide Scavengers. Phytochem. Anal. 2006, 17, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Li, X.; Zhang, N.; Miao, Y.; Feng, H.; Wu, T.; Cheng, Z. Improved Bioautographic Assay on TLC Layers for Qualitative and Quantitative Estimation of Xanthine Oxidase Inhibitors and Superoxide Scavengers. J. Pharm. Biomed. Anal. 2018, 150, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.O.; Furlan, R.L.E. A Rapid TLC Autographic Method for the Detection of Glucosidase Inhibitors. Phytochem. Anal. 2007, 18, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Simões-Pires, C.A.; Hmicha, B.; Marston, A.; Hostettmann, K. A TLC Bioautographic Method for the Detection of A- and Β-glucosidase Inhibitors in Plant Extracts. Phytochem. Anal. 2009, 20, 511–515. [Google Scholar] [CrossRef]
- Marston, A.; Kissling, J.; Hostettmann, K. A Rapid TLC Bioautographic Method for the Detection of Acetylcholinesterase and Butyrylcholinesterase Inhibitors in Plants. Phytochem. Anal. PCA 2002, 13, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, T.; Mazurek, J. Pressurized Liquid Extraction and Anticholinesterase Activity-Based Thin-Layer Chromatography with Bioautography of Amaryllidaceae Alkaloids. Anal. Chim. Acta 2009, 633, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Song, Z.; Ren, J.; Yang, M.; Li, S. Improved Thin-layer Chromatography Bioautographic Assay for the Detection of Actylcholinesterase Inhibitors in Plants. Phytochem. Anal. 2011, 22, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Taibon, J.; Ankli, A.; Schwaiger, S.; Magnenat, C.; Boka, V.-I.; Simões-Pires, C.; Aligiannis, N.; Cuendet, M.; Skaltsounis, A.-L.; Reich, E.; et al. Prevention of False-Positive Results: Development of an HPTLC Autographic Assay for the Detection of Natural Tyrosinase Inhibitors. Planta Med. 2015, 81, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tang, Q.; Wu, T.; Cheng, Z. Improved TLC Bioautographic Assay for Qualitative and Quantitative Estimation of Tyrosinase Inhibitors in Natural Products. Phytochem. Anal. 2017, 28, 115–124. [Google Scholar] [CrossRef]
- Hassan, A.M.S. TLC Bioautographic Method for Detecting Lipase Inhibitors. Phytochem. Anal. PCA 2012, 23, 405–407. [Google Scholar] [CrossRef]
- Bayineni, V.K.; Suresh, S.; Singh, G.; Kadeppagari, R.-K. Development of a Bioautographic Method for the Detection of Lipase Inhibitors. Biochem. Biophys. Res. Commun. 2014, 453, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhou, J.; Tang, Q.; Wu, T.; Cheng, Z. A New TLC Bioautographic Assay for Qualitative and Quantitative Estimation of Lipase Inhibitors. Phytochem. Anal. 2016, 27, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.H.; Liao, L.P.; Hu, H.J.; Annie Bligh, S.W.; Wang, C.H.; Chou, G.X.; Wang, Z.T. A Thin-Layer Chromatography-Bioautographic Method for Detecting Dipeptidyl Peptidase IV Inhibitors in Plants. J. Chromatogr. A 2015, 1411, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Stepanić, V.; Koštrun, S.; Malnar, I.; Hlevnjak, M.; Butković, K.; Ćaleta, I.; Dukši, M.; Kragol, G.; Makaruha-Stegić, O.; Mikac, L.; et al. Modeling Cellular Pharmacokinetics of 14- and 15-Membered Macrolides with Physicochemical Properties. J. Med. Chem. 2011, 54, 719–733. [Google Scholar] [CrossRef]
- Munić Kos, V.; Koštrun, S.; Fajdetić, A.; Bosnar, M.; Kelnerić, Ž.; Stepanić, V.; Eraković Haber, V. Structure-Property Relationship for Cellular Accumulation of Macrolones in Human Polymorphonuclear Leukocytes (PMNs). Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2013, 49, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Liu, H.; Pidgeon, C. Immobilized-Artificial-Membrane Chromatography: Measurements of Membrane Partition Coefficient and Predicting Drug Membrane Permeability. J. Chromatogr. A 1996, 728, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Barbato, F.; di Martino, G.; Grumetto, L.; La Rotonda, M.I. Prediction of Drug-Membrane Interactions by IAM-HPLC: Effects of Different Phospholipid Stationary Phases on the Partition of Bases. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2004, 22, 261–269. [Google Scholar] [CrossRef]
- Grumetto, L.; Carpentiero, C.; Di Vaio, P.; Frecentese, F.; Barbato, F. Lipophilic and Polar Interaction Forces between Acidic Drugs and Membrane Phospholipids Encoded in IAM-HPLC Indexes: Their Role in Membrane Partition and Relationships with BBB Permeation Data. J. Pharm. Biomed. Anal. 2013, 75, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Janicka, M.; Sztanke, M.; Sztanke, K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024, 29, 287. [Google Scholar] [CrossRef] [PubMed]
- Gilar, M.; Hill, J.; McDonald, T.S.; Gritti, F. Utility of Linear and Nonlinear Models for Retention Prediction in Liquid Chromatography. J. Chromatogr. A 2020, 1613, 460690. [Google Scholar] [CrossRef]
- Stępnik, K.E.; Malinowska, I.; Rój, E. In Vitro and in Silico Determination of Oral, Jejunum and Caco-2 Human Absorption of Fatty Acids and Polyphenols. Micellar Liquid Chromatography. Talanta 2014, 130, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.J.; Shokry, D.S.; Parkes, G.M.B. Predicting Human Intestinal Absorption in the Presence of Bile Salt with Micellar Liquid Chromatography. Biomed. Chromatogr. 2016, 30, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Derivatization | Ref. |
---|---|---|
Bacteria | ||
Aeromonas hydrophila | MTT | [127] |
Aliivibrio fischeri | Luminescence | [124,128,129,130] |
Bacillus subtilis | MTT, INT | [131,132,133,134,135] |
Clostridium perfringens | MTT | [136] |
Drug-resistant Staphylococcus aureus | Natural | [137] |
Enterococcus faecalis, | MTT | [127] |
Escherichia coli | MTT | [138,139,140] |
Listeria monocytogenes | MTT | [127] |
Pseudomonas syringae pv. maculicola | Luminescence | [141,142] |
Luminescence genetagged Pseudomonas syringae pv. maculicola | Luminescence | [124,128] |
methicillin resistant S. aureus | MTT | [128] |
Microccucus leteus | MTT | [128,143] |
Morganella morganii | Natural | [144] |
Mycobacterium tuberculosis | Luminescence | [145] |
Pseudomonas savastanoi pv. maculicola | MTT | [128,130,133,146,147,148] |
Ralstonia solanacearum | MTT | [149] |
S. epidermis | MTT | [128] |
Shigella flexneri | MTT | [127] |
Staphylococcus aureus | MTT | [128] |
Xanthomonas campestris pv.euvesicatoria | MTT | [143,146] |
Fungi | ||
Candida albicans | INT | [140] |
Cryptococcus neoformans | INT | [140] |
Reagent | Reaction Product | Chromogenic Agent | Results Spot/Background | Ref. | |
---|---|---|---|---|---|
Antioxidant properties | 2,2-diphenyl-1-picrylhydrazyl radical (DPPH-H) In met. or ethanol solution | 2,2-diphenyl-1-picrylhydrazyl (DPPH-H) | None | Yellow/ violet | [150,151] |
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS cation radical) (ABTS + H2O2) | ABTS | None | Colourless or pink/green | [152,153] | |
Monoamine oxidase (MAO) | Tryptamine/indole-3-acetaldehyde | NBT | None | White/ dark blue | [154] |
Tryptamine in aldehyde | 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) | Blue/ white | [155] | ||
Benzylamine | Saturated Nile Blue (NB) solution | Reddish/ light blue | [156] | ||
Peroxidase (POX) | H2O2/benzidine | Benzidine blue | None | Blue/ yellow | [157] |
Xanthine oxidase (XO) | Xanthine | O2− | Nitro blue tetrazolium (NBT) | White/ purple | [158,159] |
Glucosidase | Esculin | Esculetin | FeCl3 | Dark brown/ clear | [160] |
2-naphthyl-α (or β)-D-glucopyranoside | 2-naphthol | Fast Blue Salt FBB | Purple/ white | [161] | |
Acetylcholinesterase | naphthyl acetate 2-naphthyl acetate | 1-naphthol 2-naphthol | FBB | Purple/ light | [162,163] |
4-methoxy-phenyl acetate | 5% K3(FeCN)6 5% FeCl3.6H2O | White/ light yellow or aquamarine blue | [164] | ||
Tyrosinase | L-tyrosine L-DOPA | L-dihydroxyphenylalanine (L-DOPA) to dopaquinone | Brown or purple/white | [165] | |
L-DOPA | [166] | ||||
Lipase | 1-napthyl acetate | 1-naphthol | FBB | Purple/white or yellow light | [167] |
p-nitrophenyl butyrate | Bromothymol blue | Greenish yellow/blue | [168] | ||
β-naphthyl myristate | 2-naphthol | FBB | Purple/white | [169] | |
Dipeptidyl Peptidase IV (DPP IV) | Gly-Pro-p-nitroaniline | p-nitroaniline | NaNO2 ad N-(1-naphthyl) ethylenediamine dihydrochloride | Rose red/light pink | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grządka, E.; Malinowska, I. Selected Chromatographic Methods for Determining the Biological Activity of Substances. Appl. Sci. 2024, 14, 4265. https://doi.org/10.3390/app14104265
Grządka E, Malinowska I. Selected Chromatographic Methods for Determining the Biological Activity of Substances. Applied Sciences. 2024; 14(10):4265. https://doi.org/10.3390/app14104265
Chicago/Turabian StyleGrządka, E., and I. Malinowska. 2024. "Selected Chromatographic Methods for Determining the Biological Activity of Substances" Applied Sciences 14, no. 10: 4265. https://doi.org/10.3390/app14104265
APA StyleGrządka, E., & Malinowska, I. (2024). Selected Chromatographic Methods for Determining the Biological Activity of Substances. Applied Sciences, 14(10), 4265. https://doi.org/10.3390/app14104265