Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solid Phase Microextraction (SPME) Sampling
2.3. GC-MS Analisys
2.4. GC-MS Analysis of Spirulina after the Derivatization Reaction
2.5. GC-MS Determination of Fatty Acids (FAs) Content
2.6. Proton Transfer Reaction-Time-of-Flight-Mass Spectrometry (PTR-ToF-MS) Analysis
2.7. Proximal Composition
2.8. Extraction Process for Total Antioxidant Capacity (TAC) Determination
2.9. Total Antioxidant Capacity (TAC) Determination
2.10. Alcholic Extract for Microbiological Study
2.11. Bacterial Strains and Culture Media
2.12. Broth Micro-Dilutions Testing
2.13. Growth Curve Testing
2.14. Statistica Analysis
3. Results and Discussion
3.1. SPME-GC/MS: Chemical Volatile Composition of Spirulina
3.2. PTR-ToF-MS: Determination of Volatile Compounds from Spirulina
3.3. Fatty Acids Content
3.4. Chemical Composition of Spirulina after the Derivatization Reaction
3.5. Proximate Composition
3.6. Total Antioxidant Capacity (TAC) of Spirulina Samples Extracted with Different Solvents (PBS, MetOH 80%)
3.7. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guil-Guerrero, J.L.; Navarro-Juárez, R.; López-Martínez, J.C.; Campra-Madrid, P.; Rebolloso-Fuentes, M.M. Functional properties of the biomass of three microalgal species. J. Food Eng. 2004, 65, 511–517. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef] [PubMed]
- Varga, L.; Szigeti, J.; Kovacs, R.; Foldes, T.; Buti, S. Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). J. Dairy Sci. 2002, 85, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Andrica, F.M.; Marți, T.D.; Pânzaru, I.; Coricovac, D.; Dehelean, C.; Drăgan, S. Preliminary study on the Evaluation of Spirulina on TPA induced Mouse Ear Inflammation. J. Agro Aliment. Process. Technol. 2015, 21, 268–273. [Google Scholar]
- Deepak Kumar, K.; Shalini Gaur, R.; Arpan, B.; Sunil, P. Nutritional, Functional, Textural and Sensory Evaluation of Spirulina Enriched Green Pasta: A Potential Dietary and Health Supplement. Foods 2022, 11, 979. [Google Scholar]
- De Marco, E.R.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Pagnussatt, F.A.; Spier, F.; Bertolin, T.E.; Costa, J.A.V.; Gutkoski, L.C. Technological and nutritional assessment of dry pasta with oatmeal and the microalga Spirulina platensis. Braz. J. Food Technol. 2014, 17, 296–304. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Santos, T.D.; de Freitas, B.C.B.; Moreira, J.B.; Zanfonato, K.; Costa, J.A.V. Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innov. Food Sci. Emerg. 2016, 37, 216–220. [Google Scholar] [CrossRef]
- Lucas, B.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. Lebensm. Wiss. Technol. 2018, 90, 270–276. [Google Scholar] [CrossRef]
- Taiti, C.; Stefano, G.; Percaccio, E.; Di Giacomo, S.; Iannone, M.; Marianelli, A.; Di Sotto, A.; Garzoli, S. Addition of Spirulina to Craft Beer: Evaluation of the Effects on Volatile Flavor Profile and Cytoprotective Properties. Antioxidants 2023, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina—From growth to nutritional product: A review. Trends Food Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef]
- Gheda, S.; Abd El-Zaher, E.H.F.; Abou-Zeid, A.M.; Bedair, N.A.; Pereira, L. Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application. Mar. Drugs 2023, 21, 160. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Tanaka, M.; Ooike, M.; Tsunomura, T.; Sakaguchi, M. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J. Appl. Phycol. 2000, 12, 435–439. [Google Scholar] [CrossRef]
- Miranda, M.S.; Cintra, R.G.; Barros, S.B.M.; Mancini-Filho, J. Antioxidant activity of the microalga Spirulina maxima Brazilian. J. Med. Biol. Res. 1998, 31, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Maddaly, R. The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr. Diet. Suppl. 2010, 2, 73–83. [Google Scholar] [CrossRef]
- Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. [Google Scholar] [CrossRef]
- Taiti, C.; Masi, E.; Cicaloni, V.; Vinciguerra, V.; Salvini, L.; Garzoli, S. SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen. Molecules 2022, 27, 8739. [Google Scholar] [CrossRef]
- Farinon, B.; Costantini, L.; Molinari, R.; Di Matteo, G.; Garzoli, S.; Ferri, S.; Ceccantoni, B.; Mannina, L.; Merendino, N. Effect of Malting on Nutritional and Antioxidant Properties of the Seeds of Two Industrial Hemp (Cannabis sativa L.) Cultivars. Food Chem. 2022, 370, 131348. [Google Scholar] [CrossRef]
- Taiti, C.; Costa, C.; Guidi Nissim, W.; Bibbiani, S.; Azzarello, E.; Masi, E.; Pandolfi, C.; Pallottino, F.; Menesatti, P.; Mancuso, S. Assessing VOC emission by different wood cores using the PTR-ToF-MS technology. Wood Sci. Technol. 2017, 51, 273–295. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; Current through Revision 1; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Stunda-Zujeva, A.; Berele, M.; Lece, A.; Šķesters, A. Comparison of antioxidant activity in various spirulina containing products and factors affecting it. Sci. Rep. 2023, 13, 4529. [Google Scholar] [CrossRef] [PubMed]
- Molinari, R.; Costantini, L.; Timperio, A.M.; Lelli, V.; Bonafaccia, F.; Bonafaccia, G.; Merendino, N. Tartary Buckwheat Malt as Ingredient of Gluten-Free Cookies. J. Cereal Sci. 2018, 80, 37–43. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- He, Y.; Wang, T.; Xu, F. Can biogenic n-heptadecane be utilized to represent algae cell density dynamics in water environment? Evidences from field investigation and laboratory validation. Water Res. 2022, 214, 118219. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, M.H.; Choi, Y.J.; Chung, K.W.; Park, C.H.; Jang, E.J.; An, H.J.; Yu, B.P.; Chung, H.Y. Molecular Study of Dietary Heptadecane for the AntiInflammatory Modulation of NF-kB in the Aged Kidney. PLoS ONE 2013, 8, e59316. [Google Scholar]
- Mohy El Din, S.M.; Hussein, M.H.; Hamouda, R.A.; Shehawy, M.A.; Abd El Maksoud, A.I. Bioactive Potentiality of Some Secondary Metabolites Extracted from Microalga Spirulina platensis. J. Chem. Pharm. Res. 2019, 11, 22–35. [Google Scholar]
- Taiti, C.; Di Matteo, G.; Spano, M.; Vinciguerra, V.; Masi, E.; Mannina, L.; Garzoli, S. Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. Int. J. Mol. Sci. 2023, 24, 13732. [Google Scholar] [CrossRef]
- Van Durme, J.; Goiris, K.; De Winne, A.; De Cooman, L.; Muylaert, K. Evaluation of the volatile composition and sensory properties of five species of microalgae. J. Agric. Food Chem. 2013, 61, 10881–10890. [Google Scholar] [CrossRef]
- López-Pérez, O.; del Olmo, A.; Picon, A.; Nuñez, M. Volatile compounds and odour characteristics of five edible seaweeds preserved by high pressure processing: Changes during refrigerated storage. Algal Res. 2013, 53, 102137. [Google Scholar] [CrossRef]
- Uzlasir, T.; Isik, O.; Uslu, L.H.; Selli, S.; Kelebek, H. Impact of different salt concentrations on growth, biochemical composition and nutrition quality of Phaeodactylum tricornutum and Spirulina platensis. Food Chem. 2023, 429, 136843. [Google Scholar] [CrossRef]
- Gao, X.; Feng, T.; Liu, E.; Shan, P.; Zhang, Z.; Liao, L.; Ma, H. Ougan juice debittering using ultrasound-aided enzymatic hydrolysis: Impacts on aroma and taste. Food Chem. 2020, 345, 128767. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, J.; Xu, J.; Li, Y.; Zhou, C.; Yan, X. Change of volatile components in six microalgae with different growth phases. J. Sci. Food Agric. 2017, 97, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.; Bou, G.; Aldai, N.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Barron, L.J.R.; Lafarga, T. Characterisation of the volatile profile of microalgae and cyanobacteria using solid-phase microextraction followed by gas chromatography coupled to mass spectrometry. Sci. Rep. 2022, 12, 3661. [Google Scholar] [CrossRef] [PubMed]
- Milovanović, I.; Mišan, A.; Simeunović, J.; Kovač, D.; Jambrec, D.; Mandić, A. Determination of volatile organic compounds in selected strains of cyanobacteria. J. Chem. 2015, 2015, 969542. [Google Scholar] [CrossRef]
- Mühling, M.; Belay, A.; Whitton, B.A. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Appl. Phycol. 2005, 17, 137–146. [Google Scholar] [CrossRef]
- Deyab, M.A.; El-Sheekh, M.M.; Hasan, R.S.A.; Elsadany, A.Y.; Abu Ahmed, S.E. Phytochemical Components of Two Cyanobacterial Local Strains. Sci. J. Damietta Fac. Sci. 2021, 11, 67–75. [Google Scholar] [CrossRef]
- Thangaraj, M.; Saravana, B.P.; Thanasekaran, J.; Joen-Rong, S.; Manubolu, M.; Pathakoti, K. Phytochemicals of algae, Arthospira platensis (spirulina) Chlorella vulgaris (chlorella) and Azolla pinnata (azolla). GSC Biol. Pharm. Sci. 2022, 19, 23–43. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Valan Arasu, M. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities. Evid. Based Complement. Altern. Med. 2016, 2016, 7631864. [Google Scholar] [CrossRef]
- Cohen, Z.; Vonshak, A.; Richmond, A. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 1987, 26, 2255–2258. [Google Scholar] [CrossRef]
- Kumar, N.G.; Contaifer, D.; Madurantakam, P.; Carbone, S.; Price, E.T.; Van Tassell, B.; Brophy, D.F.; Wijesinghe, D.S. Dietary Bioactive Fatty Acids as Modulators of Immune Function: Implications on Human Health. Nutrients 2019, 11, 2974. [Google Scholar] [CrossRef]
- Takenaka, F.; Uchiyama, H. Synthesis of alpha-D-glucosylglycerol by alpha-glucosidase and some of its characteristics. Biosci. Biotechnol. Biochem. 2000, 64, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Schrader, A.; Siefken, W.; Kueper, T.; Breitenbach, U.; Gatermann, C.; Sperling, G.; Biernoth, T.; Scherner, C.; Stäb, F.; Wenck, H.; et al. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol. Physiol. 2012, 25, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.M.; Kausch, M.; Rippke, F.; Schoerlermann, A.M.; Filbry, A. Treatment of xerosis with a topical formulation containing glyceryl glucoside, natural moisturizing factors, and ceramide. J. Clin. Aesthet. Dermatol. 2012, 5, 29–39. [Google Scholar] [PubMed]
- USDA. Food Data Central. 2022. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170495/nutrients (accessed on 6 September 2023).
- Oliveira, B.C.C.; Machado, M.; Machado, S.; Costa, A.S.G.; Bessada, S.; Alves, R.C.; Oliveira, M.B.P.P. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023, 12, 3039. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Upasani, C.D.; Balaraman, R. Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother. Res. 2003, 17, 330–334. [Google Scholar] [CrossRef]
- Agustini, T.W.; Suzery, A.M.; Sutrisnanto, D.; Ma’Ruf, W.F.; Hadiyanto, H. Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp. Procedia Environ. Sci. 2015, 23, 282–289. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El Baz, F.K.; El-Baroty, G.S. Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol. Plant 2009, 31, 623–631. [Google Scholar] [CrossRef]
- Qing, R.; Ye, H.; Lan, L.; Fu, H. Study of the activity of two antioxidant enzymes of Spirulina maxima under excessive light stress. J. Sichuan Univ. 2003, 40, 565–569. [Google Scholar]
- Bagel, A.; Sergentet, D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022, 10, 496. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Farrokh, C.; Jordan, K.; Auvray, F.; Glass, K.; Oppegaard, H.; Raynaud, S.; Thevenot, D.; Condron, R.; De, R.K.; Govaris, A.; et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 2013, 162, 190–212. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gu, N.; Huang, T.Y.; Zhong, F.; Peng, G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front. Microbiol. 2023, 25, 1114199. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.G.; Baglinière, F.; Marchand, S.; Van Coillie, E.; Vanetti, M.C.; De Block, J.; Heyndrickx, M. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products. Front. Microbiol. 2017, 8, 302. [Google Scholar] [CrossRef]
N° | COMPONENT 1 | LRI 2 | LRI 3 | Spirulina (%) |
---|---|---|---|---|
1 | trans-diisopropylethylene | 709 | 713 | tr |
2 | 2-propylfuran | 785 | 793 | tr |
3 | 5-heptenal, 2,6-dimethyl- | 1038 | 1044 | tr |
4 | 2,5-dimethylcyclohexanol | 1086 | 1090 | 0.1 ± 0.02 |
5 | β-cyclocitral | 1190 | 1197 | tr |
6 | cis-geranylacetone | 1431 | 1427 | tr |
7 | trans-β-ionone | 1465 | 1460 | 1.9 ± 0.03 |
8 | pentadecane | 1509 | 1512 | 6.2 ± 0.06 |
9 | 2(4H)-benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- | 1520 | 1525 | 0.3 ± 0.02 |
10 | hexadecane | 1609 | 1612 | 5.0 ± 0.04 |
11 | 8-heptadecene | 1675 | 1680 | 1.4 ± 0.05 |
12 | heptadecane | 1709 | 1711 | 85.0 ± 2.15 |
SUM | 100.0 |
Component | m/z | Chemical Formula | Teantative Identification | Average | SD | % |
---|---|---|---|---|---|---|
1 | 27.022 | C2H3+ | Acetylene | 34.99 | 8.47 | 2.33 |
2 | 33.033 | CH5O+ | Methanol | 241.52 | 37.47 | 16.08 |
3 | 41.038 | C3H5+ | Alkylic fragment | 63.76 | 14.62 | 4.24 |
4 | 43.018 | C2H3O+ | Aldehyde fragment | 123.58 | 12.59 | 8.23 |
5 | 45.033 | C2H5O+ | Acetaldehyde | 178.26 | 37.18 | 11.87 |
6 | 47.049 | C2H7O | Ethanol | 18.83 | 1.5 | 1.25 |
7 | 49.011 | CH5S+ | S Compound (methanethiol) | 9.48 | 0.5 | 0.63 |
8 | 55.054 | C4H7+ | Fragment | 24.35 | 2.78 | 1.62 |
9 | 57.069 | C4H9+ | Alcohol fragment | 40.32 | 9.73 | 2.68 |
10 | 59.049 | C3H7O+ | Propanal | 142.27 | 24.85 | 9.47 |
11 | 61.028 | C2H5O2+ | Acetic acid | 414.32 | 44.92 | 27.58 |
12 | 67.054 | C5H7+ | Fragment | 2.55 | 0.32 | 0.17 |
13 | 69.069 | C5H9+ | 1,3-Pentadiene | 14.95 | 0.97 | 1.00 |
14 | 71.049 | C4H7O+ | Butenal | 8.63 | 0.69 | 0.57 |
15 | 73.064 | C4H9O+ | Propanal, 2-methyl | 24.53 | 3.9 | 1.63 |
16 | 75.044 | C3H7O2+ | Acetol | 1.6 | 0.21 | 0.11 |
17 | 79.049 | C6H7+ | Benzene | 3.59 | 0.43 | 0.24 |
18 | 80.05 | C5H6N+ | Pyrazyne | 6.59 | 2.24 | 0.44 |
19 | 81.073 | C6H9+ | C6 fragments | 4.31 | 0.33 | 0.29 |
20 | 83.083 | C5H7O+ | 2-Methylfuran | 7.41 | 2.69 | 0.49 |
21 | 85.06 | C5H9O+ | 1-Penten-3-one/2-Pentenal | 4.75 | 1.95 | 0.32 |
22 | 87.044 | C4H7O2+ | Diacetyl | 4.41 | 1.06 | 0.29 |
23 | 87.091 | C4H11N2+ | Piperazine | 11.79 | 2.85 | 0.78 |
24 | 89.059 | C4H9O2+ | Ethyl acetate/Butanoic acid | 4.87 | 0.76 | 0.32 |
25 | 91.057 | C4H11S+ | Butanethiol | 5.41 | 0.96 | 0.36 |
26 | 95.061 | C5H7N2+ | Pyrazine, methyl- | 22.14 | 3.51 | 1.47 |
27 | 97.085 | C6H9O+ | Furan, 2-ethyl | 3.47 | 0.28 | 0.23 |
28 | 103.075 | C5H11O2+ | Cyclopentanedecol | 1.65 | 0.45 | 0.11 |
29 | 107.049 | C7H7O+ | Benzaldehyde | 4.48 | 0.25 | 0.30 |
30 | 109.076 | C6H9N2+ | 2,6-Dimethylpyrazine | 29.17 | 2.3 | 1.94 |
31 | 111.1 | C8H15+ | 1-Methylcycloheptene | 2.74 | 0.22 | 0.18 |
32 | 113.1 | C6H9O2+ | 3-methylcyclopentanedione | 2.35 | 0.87 | 0.16 |
33 | 115.1 | C7H15O+ | Heptanal | 1.78 | 0.54 | 0.12 |
34 | 123.105 | C8H11O+ | Dimethylphenol/Ethylphenol | 5.01 | 1.43 | 0.33 |
35 | 125.106 | C8H13O+ | (Z)-1,5-octadien-3-one | 1.83 | 0.75 | 0.12 |
36 | 127.111 | C8H15O+ | 1,5-Octadien 3-ol | 2.36 | 0.95 | 0.16 |
37 | 137.122 | C6H17O3+ | Unknown | 7.24 | 1.54 | 0.48 |
38 | 139.121 | C9H15O+ | Isophorone/Furan, 2-Pentyl- | 8.39 | 1.48 | 0.56 |
39 | 151.111 | C10H15O+ | Safranal | 3.57 | 0.87 | 0.24 |
40 | 153.134 | C10H17O+ | B-Cyclocitral | 7.42 | 1.26 | 0.49 |
41 | 157.129 | C6H20O4+ | Unknown | 1.43 | 0.38 | 0.10 |
Total Emission | 1502.10 | 231.05 | 100.00 |
N° | COMPONENT 1 | LRI 2 | LRI 3 | (%) |
---|---|---|---|---|
1 | palmitoleic acid, C16:1n7 | 1925 | 1930 | 4.1 ± 0.02 |
2 | palmitic acid, C16:0 | 1981 | 1973 | 64.1 ± 1.15 |
3 | γ-linolenic acid, C18:3n6 | 2138 | 2143 | 6.2 ± 0.03 |
4 | linoleic acid, C18:2n6 | 2155 | 2152 | 13.7 ± 0.12 |
5 | oleic acid, C18:1n9 | 2165 | 2171 | 10.0 ± 0.03 |
6 | stearic acid, C18:0 | 2183 | 2178 | 1.9 ± 0.03 |
SUM | 100.0 | |||
Saturated FAs | 66.0 | |||
Unsaturated FAs | 34.0 |
N° | Components | (%) |
---|---|---|
Carbohydrates | ||
1 | methyl α-glucofuranoside | 9.0 ± 0.05 |
2 | methyl galactoside | 11.3 ± 0.09 |
3 | 3-α-mannobiose | 4.2 ± 0.04 |
4 | 2-α-mannobiose | 3.2 ± 0.02 |
5 | ribofuranose | 2.9 ± 0.03 |
6 | trehalose | 1.9 ± 0.10 |
7 | glyceryl glucoside | 55.5 ± 0.21 |
Alcohols | ||
8 | sclareol | 2.8 ± 0.05 |
9 | gycerol | 0.5 ± 0.02 |
10 | adipol 2EH | 1.2 ± 0.06 |
Protein 1 | Fat | Carbohydrate 2 | Ash | kcal/100 g dw | kJ/100 g dw |
---|---|---|---|---|---|
54.84 ± 0.13 | 0.27 ± 0.01 | 37.90 | 6.99 ± 0.009 | 373.39 | 1562.29 |
ABTS•+ mmol TE/g DW | FRAP mmol Fe2+E/g DW | |
---|---|---|
PBS | 5.96 ± 0.13 a | 5.28 ± 0.29 a |
MetOH 80% | 0.92 ± 0.05 b | 4.34 ± 0.30 b |
MIC 1 (% v/v) | MCC 2 (% v/v) | |||
---|---|---|---|---|
Bacterial Strain | AM | EtOH | AM | EtOH |
S. aureus | 3.12 | 3.12 | 12.5 | 12.5 |
E. coli | 1.56 | 1.56 | 6.25 | 6.25 |
P. aeruginosa | 3.12 | 3.12 | 6.25 | 6.25 |
K. pneumoniae | 0.78 | 0.78 | 3.12 | 3.12 |
E. faecalis | 1.56 | 3.12 | 25 | 25 |
C. albicans | 1.56 | 1.56 | 3.12 | 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiti, C.; Di Vito, M.; Di Mercurio, M.; Costantini, L.; Merendino, N.; Sanguinetti, M.; Bugli, F.; Garzoli, S. Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis). Appl. Sci. 2024, 14, 67. https://doi.org/10.3390/app14010067
Taiti C, Di Vito M, Di Mercurio M, Costantini L, Merendino N, Sanguinetti M, Bugli F, Garzoli S. Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis). Applied Sciences. 2024; 14(1):67. https://doi.org/10.3390/app14010067
Chicago/Turabian StyleTaiti, Cosimo, Maura Di Vito, Mattia Di Mercurio, Lara Costantini, Nicolò Merendino, Maurizio Sanguinetti, Francesca Bugli, and Stefania Garzoli. 2024. "Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis)" Applied Sciences 14, no. 1: 67. https://doi.org/10.3390/app14010067
APA StyleTaiti, C., Di Vito, M., Di Mercurio, M., Costantini, L., Merendino, N., Sanguinetti, M., Bugli, F., & Garzoli, S. (2024). Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis). Applied Sciences, 14(1), 67. https://doi.org/10.3390/app14010067