A Stratified Characterization of Surface Quality of Beech Processed by Profile Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Samples
2.2. Processing by Profiled Milling
2.3. Roughness Measurement
2.4. Stereo-Microscopy Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thoma, H.; Peri, L.; Lato, E. Evaluation of Wood Surface Roughness Depending on Species Characteristics. Maderas. Cienc. Tecnol. 2015, 17, 285–292. [Google Scholar] [CrossRef]
- Hazir, E.; Koc, K.H. Optimization of wood surface machining parameters in CNC routers: Response surface methodology (RSM) approach. Int. J. Sci. Res. Eng. Technol. 2016, 5, 494–501. [Google Scholar]
- Hazir, E.; Koc, K.H. Optimization of wood machining parameters in CNC routers: Taguchi orthogonal array based simulated angling algorithm. Maderas Cienc. Tecnol. 2019, 21, 493–510. [Google Scholar] [CrossRef]
- Westkämper, E.; Riegel, A. Qualittskriterien fur Geschlieffene Massivholzoberflchen. Holz Roh Werkst. 1993, 51, 121–125. [Google Scholar] [CrossRef]
- Krisch, J.; Csiha, C. Analysing wood surface roughness using an S3P Perthometer and computer based data processing. In Proceedings of the XIII Sesja Naukowa Badania dla Meblarstwa, Poznan, Poland, 26 November 1999. [Google Scholar]
- Magoss, E.; Sitkei, G. Influence of wood structure on the surface roughness at milling operations. In Proceedings of the 4th ICWSF, Missenden Abbey, UK, 14–16 July 1999. [Google Scholar]
- Gurău, L. The Roughness of Sanded Wood Surfaces. Ph.D. Thesis, Forest Products Research Centre, Buckinghamshire Chilterns University College, Brunel University, London, UK, 2004. [Google Scholar]
- Thibaut, B.; Denaud, L.; Collet, R.; Marchal, R.; Beauchêne, J.; Mothe, F.; Méausoone, P.J.; Martin, P.; Larricq, P.; Eyma, F. Wood machining with a focus on French research in the last 50 years. Ann. For. Sci. 2016, 73, 163–184. [Google Scholar] [CrossRef]
- Gurău, L.; Irle, M. Surface roughness evaluation methods for wood products: A review. Curr. For. Rep. 2017, 3, 119–131. [Google Scholar] [CrossRef]
- Gawronski, T. Optimisation of CNC routing operations of wooden furniture parts. Int. J. Adv. Manuf. Technol. 2013, 67, 2259–2267. [Google Scholar] [CrossRef]
- Sutcu, A. Investigation of parameters affecting surfaces roughness in CNC Routing operation on Wooden EGP. Bioresources 2013, 8, 795–805. [Google Scholar]
- Koc, K.H.; Erdinler, E.S.; Hazir, E.; Öztürk, E. Effect of CNC application parameters on wooden surface quality. Measurement 2017, 107, 12–18. [Google Scholar] [CrossRef]
- Gürgen, A.; Çakmak, A.; Yldiz, S.; Malkoçoğlu, A. Optimization of CNC operating parameters to minimize surface roughness of pinus sylvestris using integrated artificial neural network and genetic algorithm. Maderas Cienc. Tecnol. 2022, 24, 5. [Google Scholar] [CrossRef]
- Jiang, S.; Buck, D.; Tang, Q.; Guan, J.; Wu, Z.; Guo, X.; Zhu, Z.; Wang, X. Cutting Force and Surface Roughness during Straight-Tooth Milling of Walnut Wood. Forests 2022, 13, 2126. [Google Scholar] [CrossRef]
- Costes, J.P.; Larricq, P. Towards high cutting speed in wood milling. Ann. For. Sci. 2002, 59, 857–865. [Google Scholar] [CrossRef]
- Piernik, M.; Pinkowski, G.; Krauss, A. Effect of chip thickness, wood cross-sections, and cutting speed on surface roughness and cutting power during up-milling of beech wood. BioResources 2023, 18, 6784–6801. [Google Scholar] [CrossRef]
- Pakzad, S.; Pedrammehr, S.; Hejazian, M. A Study on the Beech Wood Machining Parameters Optimization Using Response Surface Methodology. Axioms 2023, 12, 39. [Google Scholar] [CrossRef]
- Rabiei, F.; Yaghoubi, S. A comprehensive investigation on the influences of optimal CNC wood machining variables on surface quality and process time using GMDH neural network and beest optimization algorithm. Mater. Today Commun. 2023, 36, 106482. [Google Scholar] [CrossRef]
- Zhu, Z.; Jin, D.; Wu, Z.; Xu, W.; Yu, Y.; Guo, X.; Wang, X. Assessment of Surface Roughness in Milling of Beech Using a Response Surface Methodology and an Adaptive Network-Based Fuzzy Inference System. Machines 2022, 10, 567. [Google Scholar] [CrossRef]
- Kilic, M.; Hiziroglu, S.; Burdurlu, E. Effect of machining on surface roughness of wood. Build. Environ. 2006, 41, 1074–1078. [Google Scholar] [CrossRef]
- Magoss, E. General regularities of wood surfaces roughness. Acta Silv. Lignaria Hung. 2008, 4, 81–93. [Google Scholar]
- Gurău, L.; Coşereanu, C.; Paiu, L. Comparative Surface Quality of Larch (Larix decidua Mill.) Fretwork Patterns Cut through by CNC Routing and by Laser. Appl. Sci. 2021, 11, 6875. [Google Scholar] [CrossRef]
- ISO 4287; Geometrical Product Specifications (GPS)—Surface Texture—Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 13565-2; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method; Surfaces Having Stratified Functional Properties. Part 2: Height Characterisation Using the Linear Material Ratio Curve. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO/TS 16610-31; Geometrical Product Specification (GPS)—Filtration—Part 31: Robust Profile Filters: Gaussian Regression Filters. International Standards Organisation: Geneva, Switzerland, 2010.
- EN ISO 683-1; Heat-Treatable Steels, Alloy Steels and Free-Cutting Steels. Part 1: Non-Alloy Steels for Quenching and Tempering. International Organization for Standardization: Geneva, Switzerland, 2016.
- EN ISO 4957; Tool Steel. International Organization for Standardization: Geneva, Switzerland, 2018.
- Rolleri, A.; Burgos, F.; Aguilera, A. Surface Roughness and Wettability Variation: The effect of Cutting Distance during Milling of Pinus Radiata Wood. Drv. Ind. 2016, 67, 223–228. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Fujii, Y.; Sawada, Y.; Okumura, S. Assessment of wood surface roughness: A comparison between tactile roughness and three-dimensional parameters derived using a robust gaussian regression filter. J. Wood Sci. 2004, 50, 35–40. [Google Scholar] [CrossRef]
- Gurău, L.; Mansfield-Williams, H.; Irle, M. Filtering the Roughness of a Sanded Wood Surface. Holz Roh Werkst. 2006, 64, 363–371. [Google Scholar] [CrossRef]
- Piratelli-Filho, A.; Sternadt, G.H.; Arencibia, R.V. Removing deep valleys in roughness measurement of soft and natural materials with mathematical filtering. Ciência Eng. 2012, 21, 29–34. [Google Scholar] [CrossRef]
- Tan, P.L.; Sharif, S.; Sudin, I. Roughness models for sanded wood surfaces. Wood Sci. Technol. 2012, 46, 129–142. [Google Scholar] [CrossRef]
- Wagenführ, R. Holzatlas, 5th ed.; Fachbuchverlag: Leipzig, Germany, 2000; p. 707. [Google Scholar]
D (mm) | B (mm) | d (mm) | Clearance Angle α (°) | Rake Angle γ (°) |
---|---|---|---|---|
178 | 40 | 30 | 25 | 18 |
Length (mm) | Width (mm) | Thickness (mm) | Height (mm) |
---|---|---|---|
58 | 40 | 7.2 | 16 |
Tool Rotation Speed n (rpm) | Feed Rate vf (m/min) | Measured Point | Profile Depth (mm) | Cutting Speed vc (m/s) | Feed per Tooth fz (mm/Tooth) | |||
---|---|---|---|---|---|---|---|---|
n1 | 3308 | vf1 | 6.53 | Point 1 | 2 | 28.39 | fz11 | 0.49 |
vf2 | 23.74 | fz12 | 1.79 | |||||
n2 | 6594 | vf1 | 6.53 | 56.59 | fz21 | 0.25 | ||
vf2 | 23.74 | fz22 | 0.90 | |||||
n1 | 3308 | vf1 | 6.53 | Point 2 | 8 | 29.43 | fz11 | 0.49 |
vf2 | 23.74 | fz12 | 1.79 | |||||
n2 | 6594 | vf1 | 6.53 | 58.66 | fz21 | 0.25 | ||
vf2 | 23.74 | fz22 | 0.90 | |||||
n1 | 3308 | vf1 | 6.53 | Point 3 | 16 | 30.82 | fz11 | 0.49 |
vf2 | 23.74 | fz12 | 1.79 | |||||
n2 | 6594 | vf1 | 6.53 | 61.43 | fz21 | 0.25 | ||
vf2 | 23.74 | fz22 | 0.90 | |||||
n1 | 3308 | vf1 | 6.53 | Point 4 | 10 | 29.78 | fz11 | 0.49 |
vf2 | 23.74 | fz12 | 1.79 | |||||
n2 | 6594 | vf1 | 6.53 | 59.35 | fz21 | 0.25 | ||
vf2 | 23.74 | fz22 | 0.90 |
Tool Condition | Processing Parameters | Ra | Rk | Rpk | Rvk | Rv | Rsk | Rpk/Rvk | Rk+Rpk+Rvk | A1/A2 | Wa |
---|---|---|---|---|---|---|---|---|---|---|---|
sharpened | 3308−6.53 (n1−vf1) | 5.74 (0.94) | 12.10 (1.70) | 6.81 (2.19) | 18.43 (5.30) | 46.02 (13.25) | −2.02 (0.58) | 0.37 (0.41) | 37.34 (6.62) | 0.18 (0.22) | 6.79 (1.18) |
3308−23.74 (n1−vf2) | 7.4 (0.88) | 14.99 (3.41) | 16.51 (6.21) | 20.77 (3.24) | 46.98 (5.12) | −0.71 (0.91) | 0.79 (1.92) | 52.27 (5.48) | 0.54 (1.11) | 14.81 (2.20) | |
6594−6.53 (n2−vf1) | 4.83 (0.67) | 10.19 (1.94) | 7.54 (2.30) | 11.64 (2.52) | 30,40 (7.52) | −1.08 (1.00) | 0.64 (0.91) | 29.37 (4.49) | 0.48 (0.79) | 5.38 (0.90) | |
6594−23.74 (n2−vf2) | 6.59 (0.82) | 16.02 (2.38) | 10,68 (3.35) | 16.39 (3.29) | 42.29 (10.06) | −1.01 (0.89) | 0.65 (1.02) | 43.09 (5.32) | 0.39 (0.50) | 11.83 (2.99) | |
after 600 m milling length | 3308−6.53 (n1−vf1) | 4.46 (0.63) | 10.15 (1.38) | 6.24 (1.83) | 12.27 (3.17) | 30.43 (8.02) | −1.34 (0.97) | 0.51 (0.61) | 28.66 (3.71) | 0.28 (0.34) | 10.28 (1.85) |
3308−23.74 (n1−vf2) | 4.93 (0.63) | 12.26 (2.09) | 8.67 (4.00) | 13.54 (2.71) | 35.37 (4.93) | −1.15 (0.87) | 0.64 (1.48) | 34.46 (5.33) | 0.42 (1.58) | 12.35 (5.65) | |
6594−6.53 (n2−vf1) | 5.03 (1.62) | 10.93 (2.11) | 9.71 (4.72) | 14.24 (8.02) | 36.09 (14.57) | −0.99 (1.49) | 0.68 (0.59) | 34.89 (11.90) | 0.47 (0.45) | 10.44 (2.31) | |
6594−23.74 (n2−vf2) | 4.97 (0.70) | 11.43 (1.15) | 7.12 (3.60) | 14.42 (3.67) | 36.38 (9.79) | −1.50 (0.88) | 0.49 (0.98) | 32.96 (4.66) | 0.29 (0.59) | 10.47 (4.20) |
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Groups | 693.397 | 3 | 231.132 | 51.894 | 0.000 |
Groups | Mean Difference | Std. Error | Sig | |
---|---|---|---|---|
n1−vf1 | n1−vf2 | −8.017 1 | 0.82 | 0.000 |
n2−vf1 | 1.415 | 0.58 | 0.141 | |
n2−vf2 | n1−vf2 | −2.98 | 1.07 | 0.063 |
n2−vf1 | 6.45 1 | 0.90 | 0.000 |
Parameters Combination 1 (vc/fz) | Parameters Combination 2 (vc/fz) | p-Value | Significance of an Increase in vf, and in fz, Respectively, at Different Profile Depths (Having Very Slight Changes in vc in between Them) |
---|---|---|---|
n2−vf1−D1 56.59/0.25 | n2−vf2−D1 56.59/0.90 | 0.00 | Increase of vf significant for n2 |
n2−vf1−D2 58.66/0.25 | n2−vf2−D2 58.66/0.90 | 0.015 | Increase of vf significant for n2 |
n2−vf1−D3 61.43/0.25 | n2−vf2−D4 59.35/0.90 | 0.019 | Increase of vf significant for n2 |
n2−vf1−D4 59.35/0.25 | n2−vf2−D4 59.35/0.90 | 0.002 | Increase of vf significant for n2 |
n1−vf1−D1 28.39/0.49 | n1−vf2−D1 28.39/1.79 | 0.229 | Increase of vf not significant for n1 |
n1−vf1−D2 29.43/0.49 | n1−vf2−D2 29.43/1.79 | 0.275 | Increase of vf not significant for n1 |
n1-vf1-D3 30.82/0.49 | n1−vf2−D3 30.82/1.79 | 0.02 | Increase of vf significant for n1 |
n1−vf1−D4 29.78/0.49 | n1−vf2−D4 29.78/1.79 | 0.03 | Increase of vf significant for n1 |
Parameters Combination 1 (vc/fz) | Parameters Combination 2 (vc/fz) | p-Value | Significance of an Increase in n, When vf (fz) is Kept the Same |
---|---|---|---|
n1−vf1−D1 28.39/0.49 | n2−vf1−D1 56.59/0.25 | 0.03 | Increase of n significant for vf1 |
n1−vf1−D2 29.43/0.49 | n2−vf1−D2 58.66/0.25 | 0.05 | Increase of n significant for vf1 |
n1−vf1−D3 30.82/0.49 | n2−vf1−D3 61.43/0.25 | 0.752 | Increase of n not significant for vf1 |
n1−vf1−D4 29.78/0.49 | n2−vf1−D4 59.35/0.25 | 0.792 | Increase of n not significant for vf1 |
n1−vf2−D1 28.39/1.79 | n2−vf2−D1 56.59/0.90 | 0.001 | Increase of n significant for vf2 |
n1−vf2−D2 29.43/1.79 | n2−vf2−D2 58.66/0.90 | 0.559 | Increase of n not significant for vf2 |
n1−vf2−D3 30.82/1.79 | n2−vf2−D3 61.43/0.90 | 0.598 | Increase of n not significant for vf2 |
n1−vf2−D4 29.78/1.79 | n2−vf2−D4 59.35/0.90 | 0.934 | Increase of n not significant for vf2 |
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Groups | 1541.92 | 3 | 513.97 | 30.7 | 0.000 |
Group | Mean Difference | Std. Error | Sig | |
---|---|---|---|---|
n1−vf1 | n1−vf2 | −12.59 1 | 513.97 | 0.000 |
n2−vf1 | 1.17 | 1.26 | 0.921 | |
n2−vf2 | n1−vf2 | −4.80 | 1.99 | 0.134 |
n2−vf1 | 8.96 1 | 1.55 | 0.000 |
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Groups | 3350.23 | 3 | 1116.74 | 36.49 | 0.000 |
Group | Mean Difference | Std. Error | Sig | |
---|---|---|---|---|
n1−vf1 | n1−vf2 | −14.93 1 | 2.28 | 0.000 |
n2−vf1 | 7.97 1 | 2.30 | 0.015 | |
n2−vf2 | n1−vf2 | −9.18 1 | 2.20 | 0.002 |
n2−vf1 | 13.72 1 | 2.00 | 0.000 |
Parameters Combination | p-Value | Depth 1 | Depth 2 | Depth 3 | Depth 4 | Overall Mean |
---|---|---|---|---|---|---|
n1−vf1 | 0.04 | 13.84 (0.05) A | 12.83 (1.67) AB | 11.05 (1.61) B | 10.69 (0.77) B | 12.10 (1.70) |
n1−vf2 | 0.21 | 11.64 (0.48) A | 14.82 (1.52) A | 17.02 (4.70) A | 16.49 (3.59) A | 14.99 (3.41) |
n2−vf1 | 0.51 | 9.77 (3.12) A | 9.17 (1.21) A | 11.62 (0.94) A | 10.21 (1.93) A | 10.19 (1.94) |
n2−vf2 | 0.20 | 17.91 (1.43) A | 13.76 (1.66) A | 16.06 (2.29) A | 16.34 (2.84) A | 16.02 (2.38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brenci, L.-M.; Gurău, L. A Stratified Characterization of Surface Quality of Beech Processed by Profile Milling. Appl. Sci. 2024, 14, 129. https://doi.org/10.3390/app14010129
Brenci L-M, Gurău L. A Stratified Characterization of Surface Quality of Beech Processed by Profile Milling. Applied Sciences. 2024; 14(1):129. https://doi.org/10.3390/app14010129
Chicago/Turabian StyleBrenci, Luminița-Maria, and Lidia Gurău. 2024. "A Stratified Characterization of Surface Quality of Beech Processed by Profile Milling" Applied Sciences 14, no. 1: 129. https://doi.org/10.3390/app14010129
APA StyleBrenci, L.-M., & Gurău, L. (2024). A Stratified Characterization of Surface Quality of Beech Processed by Profile Milling. Applied Sciences, 14(1), 129. https://doi.org/10.3390/app14010129