Improving Postural Ergonomics during Human–Robot Collaboration Using Particle Swarm Optimization: A Study in Virtual Environment
Abstract
:1. Introduction
2. Problem Statement
3. Methodology
3.1. Rapid Entire Body Assessment (REBA)
3.2. Particle Swarm Optimization (PSO)
3.3. Finding the Optimal Location for the Robot’s End-Effector
4. Implementation
5. User Study
5.1. Participants
5.2. Procedure
5.3. Data Analysis
5.4. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bi, Z.M.; Luo, C.; Miao, Z.; Zhang, B.; Zhang, W.; Wang, L. Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robot. Comput.-Integr. Manuf. 2021, 67, 102022. [Google Scholar] [CrossRef]
- El Zaatari, S.; Marei, M.; Li, W.; Usman, Z. Cobot programming for collaborative industrial tasks: An overview. Robot. Auton. Syst. 2019, 116, 162–180. [Google Scholar] [CrossRef]
- Fournier, É.; Kilgus, D.; Landry, A.; Hmedan, B.; Pellier, D.; Fiorino, H.; Jeoffrion, C. The impacts of human-cobot collaboration on perceived cognitive load and usability during an industrial task: An exploratory experiment. IISE Trans. Occup. Ergon. Hum. Factors 2022, 10, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Amell, T.; Kumar, S. Work-related musculoskeletal disorders: Design as a prevention strategy. A review. J. Occup. Rehabil. 2001, 11, 255–265. [Google Scholar] [CrossRef]
- Estrada-Muñoz, C.; Madrid-Casaca, H.; Salazar-Sepúlveda, G.; Contreras-Barraza, N.; Iturra-González, J.; Vega-Muñoz, A. Musculoskeletal Symptoms and Assessment of Ergonomic Risk Factors on a Coffee Farm. Appl. Sci. 2022, 12, 7703. [Google Scholar] [CrossRef]
- Keyserling, W.M.; Chaffin, D.B. Occupational ergonomics-methods to evaluate physical stress on the job. Annu. Rev. Public Health 1986, 7, 77–104. [Google Scholar] [CrossRef]
- Bevan, S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015, 29, 356–373. [Google Scholar] [CrossRef]
- Vanderborght, B. Unlocking the Potential of Industrial Human-Robot Collaboration: A Vision on Industrial Collaborative Robots for Economy and Society; Technical Report; Publications Office of the European Union: Luxembourg, 2020; Available online: https://op.europa.eu/en/publication-detail/-/publication/407d1cee-5225-11ea-aece-01aa75ed71a1/ (accessed on 8 March 2023).
- Vandekerckhove, S.; Lenaerts, K.; Szekér, L.; Desiere, S.; Lamberts, M.; Ramioul, M. Musculoskeletal Disorders and Psychosocial Risk Factors in the Workplace—Statistical Analysis of EU-Wide Survey Data; European Agency for Safety and Health at Work (EU-OSHA): Bilbao, Spain, 2021. [Google Scholar]
- International Labour Organization. Global trends on occupational accidents and diseases. World Day Saf. Health Work 2015, 1, 1–7. [Google Scholar]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Weckenborg, C.; Kieckhäfer, K.; Müller, C.; Grunewald, M.; Spengler, T.S. Balancing of assembly lines with collaborative robots. Bus. Res. 2020, 13, 93–132. [Google Scholar] [CrossRef]
- El Makrini, I.; Merckaert, K.; De Winter, J.; Lefeber, D.; Vanderborght, B. Task allocation for improved ergonomics in Human-Robot Collaborative Assembly. Interact. Stud. 2019, 20, 102–133. [Google Scholar] [CrossRef]
- Rahman, S.M. Cyber-physical-social system between a humanoid robot and a virtual human through a shared platform for adaptive agent ecology. IEEE/CAA J. Autom. Sin. 2017, 5, 190–203. [Google Scholar] [CrossRef]
- Evangelou, G.; Dimitropoulos, N.; Michalos, G.; Makris, S. An approach for task and action planning in Human–Robot Collaborative cells using AI. Procedia Cirp 2021, 97, 476–481. [Google Scholar] [CrossRef]
- Das, B.; Sengupta, A.K. Industrial workstation design: A systematic ergonomics approach. Appl. Ergon. 1996, 27, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Michalos, G.; Karvouniari, A.; Dimitropoulos, N.; Togias, T.; Makris, S. Workplace analysis and design using virtual reality techniques. CIRP Ann. 2018, 67, 141–144. [Google Scholar] [CrossRef]
- Feyen, R.; Liu, Y.; Chaffin, D.; Jimmerson, G.; Joseph, B. Computer-aided ergonomics: A case study of incorporating ergonomics analyses into workplace design. Appl. Ergon. 2000, 31, 291–300. [Google Scholar] [CrossRef]
- Mateus, J.C.; Claeys, D.; Limère, V.; Cottyn, J.; Aghezzaf, E.H. A structured methodology for the design of a human-robot collaborative assembly workplace. Int. J. Adv. Manuf. Technol. 2019, 102, 2663–2681. [Google Scholar] [CrossRef]
- Merikh-Nejadasl, A.; El Makrini, I.; Van De Perre, G.; Verstraten, T.; Vanderborght, B. A generic algorithm for computing optimal ergonomic postures during working in an industrial environment. Int. J. Ind. Ergon. 2021, 84, 103145. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, L.; Huang, N.; Radwin, R.; Li, J. From manual operation to collaborative robot assembly: An integrated model of productivity and ergonomic performance. IEEE Robot. Autom. Lett. 2021, 6, 895–902. [Google Scholar] [CrossRef]
- Colim, A.; Faria, C.; Cunha, J.; Oliveira, J.; Sousa, N.; Rocha, L.A. Physical ergonomic improvement and safe design of an assembly workstation through collaborative robotics. Safety 2021, 7, 14. [Google Scholar] [CrossRef]
- Van Der Beek, A.J.; Frings-Dresen, M. Assessment of mechanical exposure in ergonomic epidemiology. Occup. Environ. Med. 1998, 55, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Diego-Mas, J.A.; Alcaide-Marzal, J. Using Kinect™ sensor in observational methods for assessing postures at work. Appl. Ergon. 2014, 45, 976–985. [Google Scholar] [CrossRef]
- Millard, M.; Uchida, T.; Seth, A.; Delp, S.L. Flexing computational muscle: Modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 2013, 135, 021005. [Google Scholar] [CrossRef] [PubMed]
- Jovic, J.; Escande, A.; Ayusawa, K.; Yoshida, E.; Kheddar, A.; Venture, G. Humanoid and human inertia parameter identification using hierarchical optimization. IEEE Trans. Robot. 2016, 32, 726–735. [Google Scholar] [CrossRef]
- Ogundokun, R.O.; Maskeliūnas, R.; Damaševičius, R. Human Posture Detection Using Image Augmentation and Hyperparameter-Optimized Transfer Learning Algorithms. Appl. Sci. 2022, 12, 10156. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yifei, T.; Meng, Z.; Jingwei, L.; Dongbo, L.; Yulin, W. Research on Intelligent Welding Robot Path Optimization Based on GA and PSO Algorithms. IEEE Access 2018, 6, 65397–65404. [Google Scholar] [CrossRef]
- Hignett, S.; McAtamney, L. Rapid entire body assessment (REBA). Appl. Ergon. 2000, 31, 201–205. [Google Scholar] [CrossRef]
- Callegari, M.; Carbonari, L.; Costa, D.; Palmieri, G.; Palpacelli, M.C.; Papetti, A.; Scoccia, C. Tools and Methods for Human Robot Collaboration: Case Studies at i-LABS. Machines 2022, 10, 997. [Google Scholar] [CrossRef]
- Psarakis, L.; Nathanael, D.; Marmaras, N. Fostering short-term human anticipatory behavior in human-robot collaboration. Int. J. Ind. Ergon. 2022, 87, 103241. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, Q.H.; Ong, S.; Li, J.R.; Chi, Z.P. Adaptive human-robot collaboration for robotic grinding of complex workpieces. CIRP Annals 2022, 71, 285–288. [Google Scholar] [CrossRef]
- Velana, M.; Sobieraj, S.; Digutsch, J.; Rinkenauer, G. The Advances of Immersive Virtual Reality Interventions for the Enhancement of Stress Management and Relaxation among Healthy Adults: A Systematic Review. Appl. Sci. 2022, 12, 7309. [Google Scholar] [CrossRef]
- Lin, M.; Wang, H.; Niu, J.; Tian, Y.; Wang, X.; Liu, G.; Sun, L. Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training. Machines 2021, 9, 301. [Google Scholar] [CrossRef]
- Shafti, A.; Ataka, A.; Lazpita, B.U.; Shiva, A.; Wurdemann, H.A.; Althoefer, K. Real-time robot-assisted ergonomics. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1975–1981. [Google Scholar]
- Fan, J.; Hu, M.; Chu, X.; Yang, D. A comparison analysis of swarm intelligence algorithms for robot swarm learning. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 3042–3053. [Google Scholar]
- de Aguiar, M.L.; Cad, M.M. Solving Complex Dynamic Systems with Matlab in Electrical Engineering Problems. In Proceedings of the EPMESC VII: International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science, Macao, China, 2–5 August 1999; Elsevier: Amsterdam, The Netherlands, 2012; p. 167. [Google Scholar]
- Liu, Y.; Novotny, G.; Smirnov, N.; Morales-Alvarez, W.; Olaverri-Monreal, C. Mobile delivery robots: Mixed reality-based simulation relying on ros and unity 3D. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 15–20. [Google Scholar]
- Sita, E.; Horváth, C.M.; Thomessen, T.; Korondi, P.; Pipe, A.G. ROS-Unity3D based system for monitoring of an industrial robotic process. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017; pp. 1047–1052. [Google Scholar]
- Joundi, J.; Bombeke, K.; Van Kets, N.; Durnez, W.; De Bruyne, J.; Van Wallendael, G.; Lambert, P.; Saldien, J.; De Marez, L. ExperienceDNA. In Proceedings of the Design, User Experience, and Usability: Design for Contemporary Technological Environments, Virtual Event, 24–29 July 2021; Soares, M.M., Rosenzweig, E., Marcus, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 171–186. [Google Scholar]
- Huber, M.; Rickert, M.; Knoll, A.; Brandt, T.; Glasauer, S. Human-robot interaction in handing-over tasks. In Proceedings of the RO-MAN 2008-the 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, 1–3 August 2008; pp. 107–112. [Google Scholar]
- Nemlekar, H.; Dutia, D.; Li, Z. Object transfer point estimation for fluent human-robot handovers. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2627–2633. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidi, M.; Van de Perre, G.; Kumar Hota, R.; Cao, H.-L.; Saldien, J.; Vanderborght, B.; El Makrini, I. Improving Postural Ergonomics during Human–Robot Collaboration Using Particle Swarm Optimization: A Study in Virtual Environment. Appl. Sci. 2023, 13, 5385. https://doi.org/10.3390/app13095385
Omidi M, Van de Perre G, Kumar Hota R, Cao H-L, Saldien J, Vanderborght B, El Makrini I. Improving Postural Ergonomics during Human–Robot Collaboration Using Particle Swarm Optimization: A Study in Virtual Environment. Applied Sciences. 2023; 13(9):5385. https://doi.org/10.3390/app13095385
Chicago/Turabian StyleOmidi, Mohsen, Greet Van de Perre, Roshan Kumar Hota, Hoang-Long Cao, Jelle Saldien, Bram Vanderborght, and Ilias El Makrini. 2023. "Improving Postural Ergonomics during Human–Robot Collaboration Using Particle Swarm Optimization: A Study in Virtual Environment" Applied Sciences 13, no. 9: 5385. https://doi.org/10.3390/app13095385
APA StyleOmidi, M., Van de Perre, G., Kumar Hota, R., Cao, H.-L., Saldien, J., Vanderborght, B., & El Makrini, I. (2023). Improving Postural Ergonomics during Human–Robot Collaboration Using Particle Swarm Optimization: A Study in Virtual Environment. Applied Sciences, 13(9), 5385. https://doi.org/10.3390/app13095385