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Abstract: Musculoskeletal disorders caused by poor work posture are a serious concern in the
industry since they lead to absenteeism and medical leave from work. In the context of human–robot
collaboration, this issue can be mitigated if collaborative robots support human workers to perform
their tasks more ergonomically. In this work, we propose a method to optimize human posture
during human–robot collaboration using the Particle Swarm Optimization (PSO) algorithm. Our
approach involves assigning an appropriate location to the robot’s end-effector to minimize the
distance between the optimized posture of the human and their current posture in the working space.
To measure human posture, we use the Rapid Entire Body Assessment score (REBA) calculated from
body joint angles captured by a Kinect camera. To validate the effectiveness of our proposed method,
we conducted a user study with 20 participants in a virtual reality environment. The PSO algorithm
could position the robot end-effector to the optimal position close to real time. Our results showed
that our method could improve ergonomics by 66%, indicating its potential for use in human–robot
collaborative applications.

Keywords: human–robot collaboration; optimization; ergonomics; PSO algorithm

1. Introduction

In industrial environments, workers suffer from high physical and cognitive pressure
and this might result in irreparable health problems [1–3]. Some of those are muscu-
loskeletal disorders (MSDs), which are related to physical pressure [4,5]. This affects about
40 million workers in Europe and is the main reason for workers’ leave requests and injuries,
costing up to EUR 240 billion annually to companies and governments [6–8]. Specifically,
a survey in 2015 showed that 59.31% of workers in Europe reported suffering from at least
one of three forms of MSD (backache, neck pain, shoulder pain and pain in the upper
limbs, and pain in the lower limbs) [9]. In the global context, work-related musculoskeletal
disorders account for 40% of worldwide compensation expenses of occupational and work-
related accidents and illnesses, and lower back pain is the major cause of years lived with
disability [10,11]. To address these issues, using collaborative robots (or cobots) to share the
workload with the workers is a potential solution. The working condition is consequently
improved and the risk of injuries is reduced [12].

When a worker collaborates with a robot, the physical pressure can be reduced at
two levels. At the task level, a task allocation method can be used to effectively hand
off sub-tasks to the robot and the worker based on their capabilities [13–15]. At the
sub-task level, the physical workload can be further reduced by optimizing the robot’s
end-effector position during the collaborative task. This allows the worker to perform the
task more ergonomically.
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Several approaches have been proposed to decrease the workload of workers to
improve ergonomics and avoid MSDs. One approach is to improve the workspace design.
Das and Sengupta proposed a guideline to establish an ergonomic workstation layout based
on the anthropometry of the user population [16]. Michalos et al. used immersive virtual
reality to examine and improve the industrial workplace [17]. Feyen et al. proposed a PC-
based program that considers the biomechanical risk of accidents in a setting of automobile
assembly in the design of the workplace [18]. Mateus et al. proposed a systematic design
method for human–robot shared workstations [19]. The workstation’s architecture is
established by examining the CAD model, product, and assembly sequence limitations to
determine the ergonomics of the assembly duties. Another strategy is to improve posture
while doing a task. Merikh et al. introduced a generic method that, depending on job
restrictions, finds the worker’s ideal ergonomic position in real time. In [20], the algorithm
offers an ideal postural position for performing activities in an industrial setting to reduce
the risk of work-related MSDs. Zhang et al. established a unified approach to assess the
productivity and ergonomic performance of both manual operations and collaborative
robot assembly systems [21]. Colim et al. provided a paradigm to support the safe design
and conception of ergonomically driven collaborative robotics workstations [22]. Their
methodology consists of four primary steps: (i) the characterization of the starting state,
(ii) the risk assessment, (iii) the development of criteria for a secure design, and (iv) the
conception of the hybrid workstation. The framework’s results indicate that the proposed
technique provides a sufficient basis for accelerating the design and development of new
human-centered collaborative robotic workstations.

Methods for assessing the human body’s posture are crucial for evaluating and enhanc-
ing ergonomics. Observational approaches are well-known ergonomic instruments that
serve a variety of applications [23]. Examining the operator’s body postures and manually
encoding the expected joint angles from a video clip of the job are systematic operations.
Yet, because of their paper-based nature, they are imprecise and time-consuming [24]. Time-
of-flight cameras and other vision-based person-tracking technologies allow automated
posture assessment. They provide an inexpensive technique to evaluate the ergonomics
of the operator on the work floor. In addition to human kinematics sensing, a variety
of models have been developed to measure the body’s dynamics [25–27]. Due to their
intricacy, however, such models are usually impossible to construct online and may only
be used offline.

In this work, we propose a novel framework for postural optimization that improves
worker comfort. In this framework, we attempt to find the optimal location for the robot’s
end-effector by the Particle Swarm Optimization (PSO) algorithm to reduce the ergonomics
to the most optimal value [28]. The PSO algorithm is a better fit for our work as com-
pared to other intelligent algorithms because of its simplicity, high execution efficiency,
and ability to handle nonlinear problems. Additionally, it avoids the need for complicated
mathematical formula derivations and parameter selection [29]. The ergonomic value is
measured by the REBA (Rapid Entire Body Assessment) score system because it provides
a quantitative, rapid, and brief explanation of a posture’s overall ergonomic status [30].
There is no restriction in using the calculation method of ergonomics during human–robot
collaboration, and according to the needs of the research, other measurement methods
such as RULA (Rapid Upper Limb Assessment) or OWAS can be used. While there are
various methods available for evaluating the risk of musculoskeletal disorders, the REBA
method was chosen since it can give a quantitative measure for the ergonomic state of
the worker’s posture. Another reason for choosing REBA is because we want a full body
posture assessment. Since the value of the REBA score in the lower limb was always equal
to 1 and the users in this study were always in a standing position while working with
the robot, we omitted the calculation of the lower limb. We conducted a user study with
20 participants to validate the proposed method in an assembly task, which is the most
widely used type of task in human–robot collaboration in the industry. The collaborative
task was set up in a virtual reality environment (VR) since it allows developers to quickly
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establish and test the many interactive scenarios before actually building them. Another
advantage is safety due to the lack of physical risks associated with interacting with real
robots, especially at the early stages of system development. Other advantages are low cost
and no robot maintenance costs [31–33]. Additionally, the virtual environment provides a
close-to-reality simulated environment to study task performance in work environments
and workers’ ergonomics [34,35].

The rest of the paper is organized as follows. The problem statement is formulated in
Section 2. The methodology is described in Section 3. The implementation is detailed in
Section 4, including the human–robot collaborative task, hardware, and software. The user
study to validate the proposed method is presented in Section 5. The discussion and
conclusion are given in Sections 6 and 7.

2. Problem Statement

In the course of human–robot collaboration, some positions of the human body may
be non-ergonomic and may result in injury to the human operator. For example, in the
workplace, a worker tries to lean forward multiple times to pick up an object for assembling
a workpiece, which puts more pressure on his/her backbone. In this context, the robot can
assist the human by appropriately positioning for the end-effector such that the ergonomics
are enhanced during the task. The new location for the robot’s end-effector should be
calculated and assigned to the robot regarding the user’s ergonomics if an improper posture
is detected. For this purpose, a mathematical method needs to be developed to determine
the optimal location for the robot’s end-effector that leads to an ergonomically optimal
posture for the human.

3. Methodology

In this section, we present the framework of our novel method that optimizes the
robot’s end-effector position based on the worker’s posture to improve ergonomics. As in-
dicated in Figure 1, the ergonomics framework is composed of three parts. First, a 3D
skeleton tracker calculates and sends the joint angles of the human body for visualization.
Second, these data are used to generate the current REBA ergonomic score. The current
REBA score and the optimum position REBA score are sent to the user’s PSO-based er-
gonomic optimization system in order to reduce the disparity between the current position
and the optimal position. Thirdly, the optimizer transmits the optimum position to the
workpiece position controller, which modifies the robot’s behavior to place the user in a
more advantageous position for co-manipulation/handover operations.

3.1. Rapid Entire Body Assessment (REBA)

In this work, we use Rapid Entire Body Assessment (REBA) methods that assess
postures during static or rapidly changing actions. The values are incorporated into a
final evaluation of the given posture and range from 1 to 15 (from comfortable position
to unacceptable ergonomic position, calling for immediate action). Researchers provide a
brief explanation of the ergonomic status of the user in [36], alongside the posture joints’
position and orientation in real time, which are captured from the skeleton tracking system.

The REBA score system gives a quantitative, fast, and brief explanation of posture’s
overall ergonomic status. By incorporating the skeleton tracking system, we are able to
continuously monitor the ergonomic posture of workers. This means these data are updated
whenever their posture changes and are used to evaluate ergonomics.

In the REBA calculation method, the human skeleton is divided into two groups.
The first group includes the neck, trunk, and legs. The second group includes the arm,
lower arm, and wrist. A value is defined based on its angle in its idle position for every
part in each group. For the robot’s end-effector, the final REBA score of the user can be
used as a measure for starting the optimization algorithm. In this work, we intend to
investigate the improvement of ergonomics with optimized robot end-effector locations
with the PSO algorithm.



Appl. Sci. 2023, 13, 5385 4 of 12

Skeleton tracking
and REBA score system

Robot control
(physical/virtual)

Difference between
the current  REBA score
and the best REBA score

Optimizing robot's
end-effector position

by PSO algorithm

Optim
al end-effe

ctor's
 positio

n

Best e
rgonomic posture

Figure 1. The ergonomics controller scheme. The human skeleton is tracked to calculate REBA
scores. The robot’s end-effector position is optimized by the PSO algorithm and executed on the
robot platform.

3.2. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm was presented by Kennedy and
Eberhart [28]. They originally intended to use existing social models and social relation-
ships to create a type of computational intelligence that did not require individual special
abilities. Their work led to the creation of a powerful optimization algorithm, called the
Particle Swarm Optimization Algorithm (PSO). This method is adapted from the collective
performance of groups of animals such as birds and fish. There are a number of creatures in
the PSO, which we call particles, and they are scattered throughout the search space. Each
particle calculates the value of the objective function at the position in the space in which it
is located. The crowd chooses a direction to move. After performing the mass move, one
step of the algorithm ends. These steps are repeated several times until the desired answer
is obtained.

The objective function for our method is

min J(k) =
1
2

∫ t

0

[
(r − y)T Q(r − y) + uT Ru

]
dt (1)

u = r − kx (2)

Q ≥ 0 and R > 0

In this study, we propose the formula as a performance index (J) that is designed to
minimize ergonomics-related issues. The formula incorporates the REBA score evaluation
system, which is widely used to evaluate the ergonomic risks associated with different
postures and movements.

In the formula, r represents the most optimal ergonomic posture for the human, as de-
termined by the REBA score evaluation system, with a numerical value of “1”. The output
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of the REBA system for the human’s current ergonomic posture is denoted as y. The goal
of the formula is to minimize the difference between the most optimal posture (r) and the
current posture (y), as reducing this difference can potentially improve ergonomics and
reduce the risk of musculoskeletal disorders.

The input to the formula is denoted as u, which is defined as [r − kx], where x repre-
sents all possible states of the system, i.e., the locations of the robot’s end-effector. The term
kx represents the effect of the optimization algorithm, where k is a factor with three decimal
places that ranges between −1 and 1 and is set by the optimization algorithm. The purpose
of this factor is to allow the system to adjust the robot’s end-effector location (x) in order
to decrease the difference between the best REBA score (r = 1) and the worker’s current
ergonomics (y). By adjusting the end-effector location, the ergonomics of the user during
handover can be changed, potentially improving the overall ergonomics of the task.

To optimize the robot’s end-effector motions, we utilized the Particle Swarm Optimiza-
tion (PSO) algorithm, which is a popular optimization algorithm known for its speed and
accuracy. The values of Q and R in the formula were determined through manual experi-
mentation, considering criteria such as convergence speed and minimization of the REBA
score. Since in this manual experimentation we investigated different values for Q and
R, other values lead to suboptimal output for the proposed method. It was observed that
changing the values of Q or R resulted in the PSO algorithm converging to an end-effector
position that was associated with a suboptimal REBA score, highlighting the importance
of choosing appropriate values for these parameters [37]. The proposed formula has the
potential to enhance human ergonomics during human–robot interaction tasks by minimiz-
ing the difference between the most optimal posture and the current posture of the worker.
The problem is to minimize the above equation to avoid non-ergonomic postures that we
applied ODE45 in MATLAB to solve this problem [38].

3.3. Finding the Optimal Location for the Robot’s End-Effector

By determining the appropriate location to place the end-effector of the robot in front
of the user, the PSO algorithm helps the human to bear less pressure when interacting with
the robot and the system. According to Equation (1), the PSO algorithm tries to find the
optimal location for the robot by finding the appropriate value for k. During the process of
finding the best placement of the robot’s end-effector, we examine the space in front of the
human. In order to reduce the processing load and increase the performance speed of the
method in determining the appropriate location for the robot’s end-effector, we calculated
two of the three dimensions of the workspace, the height of the human elbow from the
ground and the distance between the robot and the human via the skeleton tracking system.
This is according to the definition of REBA and according to appropriate ergonomics. Based
on this processing, the obtained point is used to determine the most suitable location for the
robot’s end-effector within the virtual environment. Using the current REBA score of the
user as feedback and determining the amount of difference achieved in the review stage,
we attempt to have the robot make the least movement possible while the workpiece passes
to the human. After the appropriate point for the robot’s end-effector is sent to the robot
control (either physical or virtual), the robot uses that point to position its end-effector to
improve user ergonomics. The updated ergonomic value is also analyzed.

4. Implementation

In this section, we present details of the implementation of our proposed method.
The human–robot collaborative environment was set up in VR due to its advantage of
quickly and safely establishing and testing collaborative scenarios in a close-to-reality situ-
ation. The experimental setup is illustrated in Figure 2A. The workspace is modeled using
the Unity3D game engine and with the ROS# package provided by Siemens [39,40]. In this
environment, a human worker and a robot collaborate to assemble products designed using
the ExperienceDNA tool [41]. An HTC Vive Pro was used to interact with a virtual reality
environment. A Kinect 2 camera was used for skeleton tracking. The specifications of the
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system used to set up the simulated virtual reality environment, REBA score calculations,
and the processes performed in this work are as follows: CPU: AMD Ryzen™ 9 5950X,
64 GB RAM; OS: Windows 10; GPU: Nvidia RTX 3070; HDD: Samsung SSD 970 1 TB.
The virtual robot used during the collaborative task is Franka, a widely used robot platform
in human–robot collaboration.

A. Experimental setup

User

VR headset

Kinect 2

Computer

Monitor

B. Start

C. In progress D. Finish

Figure 2. The system implementation. (A) The experimental setup. (B–D) The human–robot
collaborative task in virtual reality.

A user wears the VR headset and starts the assembly task in which the user and the
robots collaboratively assemble a product consisting of 22 workpieces. The assembly task
scenario is as follows (see Figure 2B–D). At the start, the workpieces are placed on the
table. The robot hands over the workpieces one by one to the user to assemble the product.
The task is finished when all workpieces are assembled correctly. At each step during
the collaboration, the PSO algorithm selects the robot’s optimal end-effector positions for
handovers. The evaluation involved measuring users’ ergonomics from different starting
points as feedback for the system to calculate the error between the previous handover and
the most optimal location for handover. This error is influenced by factors such as height,
handedness, and distance from the robot.

In most cases, the optimization process took less than 5 s to reach the settling point.
Figure 3 shows the control effort and the output of an example case. The value of k is
calculated by the PSO algorithm (see Equation (1)). In this case, the system took 2.5 s to find
the optimal solution. This time is comparable with the previous studies in human–robot
object handover [42,43]. It is worth mentioning that this time depends on the speed of
the robot, which needs to be within the safety regulation and the specific task and can be
decreased by increasing the speed of the robot.
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Figure 3. The output (orange) and the control effort (red) of the robot movement during the first 5 s
in an example case. The value of k (blue) is calculated by the PSO algorithm. The system took around
2.5 s to settle.

5. User Study

The user study aims to investigate the effectiveness of applying the PSO algorithm in
improving ergonomics during human–robot collaboration. The user study was conducted
in a controlled environment with participants performing an assembly task together with a
collaborative robot. By comparing the results to a baseline condition where no optimiza-
tion was applied, we can demonstrate the advantages of using PSO for improving body
ergonomics (see Figure 4).

5.1. Participants

For our study, we selected a diverse group of participants to investigate the potential to
be applied to different users in the industry. In total, we recruited 20 participants (9 females,
11 males). Their ages ranged from 25 to 30 years. We also had both left-handed and
right-handed participants (3 left-handed, 17 right-handed). Additionally, our participants
had varying heights. These variations ensured the diversity of our participants, which
contributes to the potential of applying our proposed method to diverse groups of users in
real life.

5.2. Procedure

All participants received an explanation of the study and informed consent was
obtained before participating in the study. Each participant was asked to perform an
assembly task consisting of assembling workpieces in a VR environment in two conditions
with a counter-balanced order. In the first condition (baseline), no optimization method
was implemented and the robot’s end-effector was always fixed. In the second condition,
the PSO algorithm was used in guiding the robot’s end-effector to the most optimal position.
In both conditions, REBA scores were measured to assess the level of ergonomics in each
condition. The calculated REBA scores were the total score, the trunk score, the upper arm
score, and the lower arm score.
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Figure 4. A user collaborates with a collaborative robot in a virtual reality environment. With PSO
optimization of the robot’s end-effector position, the user’s ergonomics are improved compared to
the baseline condition where no optimization was applied.

5.3. Data Analysis

Data were analyzed in Python using pingouin and scipy packages. Normality and
homogeneity were checked by Shapiro–Wilk and Bartlett tests to determine the statistical
tests. The significance level was set at 0.05.

5.4. Results

Results of four paired samples Wilcoxon tests showed that all REBA scores were
improved in the PSO condition compared to the baseline (see Figure 5). The total REBA
was significantly reduced from 3.55 ± 0.23 in the baseline to 1.19 ± 0.10 in the PSO condition
(p < 0.001). The trunk score was significantly reduced from 3.83 ± 0.17 in the baseline to
1.08 ± 0.08 in the PSO condition (p < 0.001). The upper arm score was significantly reduced
from 3.06 ± 0.17 in the baseline to 1.24 ± 0.08 in the PSO condition (p < 0.001). The lower
arm score was significantly reduced from 1.96 ± 0.07 in the baseline to 1.22 ± 0.07 in the
PSO condition (p < 0.001).
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Baseline PSO
Lower Arm Score
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Baseline PSO
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Baseline PSO
Trunk Score
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Figure 5. All REBA scores of participants across two conditions: baseline and PSO. All scores
were significantly improved when using PSO optimization compared to the baseline. The scores
of the same participant across conditions are connected by a dashed line. Error bars show the 95%
confidence interval.

6. Discussion

The user study demonstrated a significant benefit of using the PSO algorithm to
optimize the placement of the robot’s end-effector within a VR environment. The imple-
mentation of the PSO algorithm resulted in improvements in all REBA scores. The total
and the other REBA scores were significantly enhanced, reaching a value close to the
ideal score of “1”. During the human–robot collaboration, the PSO algorithm assigned
proper placement locations to the robot to pass workpieces for assembly. Following the
end-effector positions, the user was able to perform the task more ergonomically, reducing
the risk of physical strain or injury.

Our proposed method was validated with people of different heights and handedness,
demonstrating its potential for application to a wide range of users in the industry. However,
it is important to note that the parameters of the framework might need to be adjusted
according to the targeted tasks in each use case in the industry. Some factors need to be
taken into consideration, e.g., the robot’s movement limitations and the REBA threshold
value. By making such adjustments, the placement of the robot’s end-effector can be further
optimized to provide more ergonomic collaboration between human workers and robots in
industrial settings.

This framework provides several advantages, i.e., improving ergonomics and creating
real-time safety measures, making it suitable for tasks, e.g., painting and polishing. The use
of a VR platform and a non-intrusive motion capture device (i.e., the Kinect camera)
reduces the cost of prototyping, training, and maintenance. This facilitates the process
of deployment of human–robot collaborative tasks in real industrial settings. However,
a limitation of this approach is that the user cannot feel the weight of the objects being
passed by the robot. As a result, there might be differences in the user’s posture in
physical reality when dealing with heavier objects compared to what it is in VR. However,
the differences are predicted to be small since the majority of objects used in assembly tasks
are lightweight. Therefore, a direct implementation of our proposed framework from VR
to physical reality is applicable to most industrial use cases.
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7. Conclusions

MSDs are a significant concern in the industry since they are the leading cause of
work-related injuries. These injuries are often caused by workers performing repetitive
tasks in non-ergonomic positions. While using collaborative robots can partially reduce the
non-ergonomic condition, an additional approach is to optimize the robot’s end-effector
during human–robot collaboration. In this work, we developed a solution that improves
ergonomics by optimizing the robot’s end-effector position using the PSO optimization
algorithm. This algorithm takes into consideration the differences between the user’s
current ergonomics and the best possible ergonomics value, which is accessed using the
REBA method. Through a human–robot collaboration user study in a VR environment, we
demonstrated the potential of this approach to improve user ergonomics.

Future work will include validating our approach in a physical environment. The im-
plementation of our proposed method can be further adapted to the needs of many indus-
trial use cases. Once the implementation is deployed with workers in industrial settings,
assessing user acceptability is important to further validate our proposed method.
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