Improved Adsorption and Photocatalytic Degradation of Methyl Orange by Onion-like Nanocarbon/TiO2 Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the OLNCs
2.2. Synthesis of the Nanocomposites
2.3. Adsorption and Photocatalytic Experiments
2.4. Characterisation of the Photocatalytic Nanocomposites
3. Results and Discussion
3.1. Characterization of the Photocatalytic Nanocomposites
3.1.1. Raman Spectroscopy
3.1.2. Thermogravimetric and Differential Thermal Analysis
3.1.3. Morphological Characteristics and BET Analysis
3.1.4. Optical Characteristics
3.2. Photocatalytic Degradation of Methyl Orange
3.3. Kinetics
3.4. Methyl Orange Speciation and the Regeneration of the Photocatalyst
3.5. Possible Degradation Mechanism
3.6. Comparison with Other Carbon/TiO2 Composites
Photocatalyst | Carbon Source | CO (mg/L) | Degradation (%) | Time (Min) | Volume (mL) | Reference |
---|---|---|---|---|---|---|
TiO2/CNF | Nanocellulose | 40 | 99.72 | 30 | 20 | [34] |
TiO2/g-C3N4 | g-C3N4 | 10 | 55 | 180 | 100 | [35] |
N-GQD/TiO2 | N-GQDs | 10 | 95 | 120 | 50 | [36] |
TiO2/CQD | CQDs | 10 | 39.1 | 120 | 100 | [37] |
MWCNT/TiO2 | MWCNTs | 15 | 97.4 | 90 | 150 | [38] |
TiO2/MC | RF | 100 | 89 | 75 | * | [39] |
Ag/TiO2/biochar | Biochar | 20 | 97.48 | 60 | 40 | [40] |
TiO2/OLNC | OLNCs | 10 | 99.9 | 120 | 100 | This study |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; You, J.; Wang, Z.; Zhao, Y.; Xu, J.; Li, X.; Zhang, H. Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: A review of recent advances. J. Environ. Chem. Eng. 2022, 10, 108329. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Bao, W.; Yan, A.; Guo, R. Synthesis and visible-light photocatalytic properties of BiOBr/CdS nanomaterials. J. Mater. Sci. 2021, 56, 6732–6744. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Zhao, Y.; Bao, W. A Review of Amino-Functionalized Magnetic Nanoparticles for Water Treatment: Features and Prospects. J. Clean. Prod. 2021, 281, 124668. [Google Scholar] [CrossRef]
- Naikwade, A.G.; Jagadale, M.B.; Kale, D.P.; Gophane, A.D.; Garadkar, K.M.; Rashinkar, G.S. Photocatalytic Degradation of Methyl Orange by Magnetically Retrievable Supported Ionic Liquid Phase Photocatalyst. ACS Omega 2020, 5, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Vu Nu, T.T.; Thi Tran, N.H.; Truong, P.L.; Phan, B.T.; Nguyen Dinh, M.T.; Dinh, V.P.; Phan, T.S.; Go, S.; Chang, M.; Loan Trinh, K.T.; et al. Green synthesis of microalgae-based carbon dots for decoration of TiO2 nanoparticles in enhancement of organic dye photodegradation. Environ. Res. 2022, 206, 112631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Yang, K.; Yang, Y.; Jia, J.; Liang, Y.; Guo, L. Carbon Nano-Onions (CNOs)/TiO2 Composite Preparation and Its Photocatalytic Performance under Visible Light Irradiation. J. Environ. Eng. 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Mente, P.; Mashindi, V.; Phaahlamohlaka, T.N.; Monyatsi, T.N.; Forbes, R.P.; Coville, N.J. Oxidation of Benzyl Alcohol Using Cobalt Oxide Supported Inside and Outside Hollow Carbon Spheres. ChemistryOpen 2021, 10, 618–626. [Google Scholar] [CrossRef]
- Mofokeng, T.P.; Tetana, Z.N.; Ozoemena, K.I. Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics. Carbon N. Y. 2020, 169, 312–326. [Google Scholar] [CrossRef]
- Pakade, V.E.; Maremeni, L.C.; Ntuli, T.D.; Tavengwa, N.T. Application of quaternized activated carbon derived from Macadamia nutshells for the removal of hexavalent chromium from aqueous solutions. S. Afr. J. Chem. 2016, 69, 180–188. [Google Scholar] [CrossRef]
- Mahmoodi, N.M. Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water Air Soil Pollut. 2013, 224, 1612. [Google Scholar] [CrossRef]
- Hussain, C.M. Carbon Nanomaterials as Adsorbents for Environmental Analysis. Nanomater. Environ. Prot. 2015, 9781118496, 217–236. [Google Scholar] [CrossRef]
- Mkhari, O.; Ntuli, T.D.; Coville, N.J.; Nxumalo, E.N.; Maubane-Nkadimeng, M.S. A comparison of fluorescent N-doped carbon dots supported on the surface of hollow and solid carbon spheres, and solid silica spheres. Diam. Relat. Mater. 2021, 118, 108500. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, A.K.; Sharma, V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng. 2015, 2, 1094017. [Google Scholar] [CrossRef]
- Ntuli, T.D.; Mongwe, T.H.; Sikeyi, L.L.; Mkhari, O.; Coville, N.J.; Nxumalo, E.N.; Maubane-Nkadimeng, M.S. Removal of hexavalent chromium via an adsorption coupled reduction mechanism using olive oil derived carbon nano-onions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100477. [Google Scholar] [CrossRef]
- Shaku, B.; Mofokeng, T.P.; Mongwe, T.H.; Coville, N.J.; Ozoemena, K.I.; Maubane-Nkadimeng, M.S. Physicochemical Properties of Nitrogen Doped Carbon Nano-onions Grown by Flame Pyrolysis from Grapeseed Oil for Use in Supercapacitors. Electroanalysis 2020, 32, 2946–2957. [Google Scholar] [CrossRef]
- Sikeyi, L.L.; Ntuli, T.D.; Mongwe, T.H.; Maxakato, N.W.; Carleschi, E.; Doyle, B.P.; Coville, N.J.; Maubane-Nkadimeng, M.S. Microwave assisted synthesis of nitrogen doped and oxygen functionalized carbon nano onions supported palladium nanoparticles as hybrid anodic electrocatalysts for direct alkaline ethanol fuel cells. Int. J. Hydrogen Energy 2021, 46, 10862–10875. [Google Scholar] [CrossRef]
- Chaudhary, D.; Khare, N.; Vankar, V.D. Ag nanoparticles loaded TiO2/MWCNT ternary nanocomposite: A visible-light-driven photocatalyst with enhanced photocatalytic performance and stability. Ceram. Int. 2016, 42, 15861–15867. [Google Scholar] [CrossRef]
- Ghos, B.C.; Farid, S.; Farhad, U.; Patwary, A.M.; Majumder, S.; Hossain, A.; Tanvir, N.I.; Rahman, M.A.; Tanaka, T. Influence of the Substrate, Process Conditions, and Postannealing Temperature on the Properties of ZnO Thin Films Grown by the Successive Ionic Layer Adsorption and Reaction Method. ACS Omega 2021, 6, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- John, A.K.; Palaty, S.; Sharma, S.S. Greener approach towards the synthesis of titanium dioxide nanostructures with exposed {001} facets for enhanced visible light photodegradation of organic pollutants. J. Mater. Sci. Mater. Electron. 2020, 31, 20868–20882. [Google Scholar] [CrossRef]
- Yu, W.; Zheng, B.; Mao, K.; Jiang, J.; Luo, B.; Wu, X.; Tao, T.; Min, X.; Mi, R.; Huang, Z.; et al. Interfacial structure and photocatalytic degradation performance of graphene oxide bridged chitin-modified TiO2/carbon fiber composites. J. Clean. Prod. 2022, 361, 132261. [Google Scholar] [CrossRef]
- Chen, H.; Wu, J.; Shi, J.; Zhang, W.; Wang, H. Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber. Ind. Crops Prod. 2021, 164, 113380. [Google Scholar] [CrossRef]
- Da Dalt, S.; Alves, A.K.; Bergmann, C.P. Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater. Res. Bull. 2013, 48, 1845–1850. [Google Scholar] [CrossRef]
- Sikeyi, L.L.; Ntuli, T.D.; Mongwe, T.H.; Maxakato, N.W.; Coville, N.J.; Maubane-Nkadimeng, M.S. Platinum Nanoparticles Loaded on Pristine and Boron Oxide Modified Carbon Nano-Onions for Enhanced Ammonia Electrooxidation in Alkaline Direct Ammonia Fuel Cells. J. Electroanal. Chem. 2022, 917, 116411. [Google Scholar] [CrossRef]
- Xiong, J.; He, L. Influence of Na+content on the structure and morphology of TiO2nanoparticles prepared by hydrothermal transformation of alkaline titanate nanotubes. J. Exp. Nanosci. 2017, 12, 384–393. [Google Scholar] [CrossRef]
- Wang, X.; Pan, H.; Xue, X.; Qian, J.; Yu, L.; Yang, J.; Zhang, Z. Preparation and characterization of titanate nanotubes/carbon composites. Mater. Chem. Phys. 2011, 130, 827–830. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–40. [Google Scholar] [CrossRef]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. S. Afr. J. Chem. Eng. 2020, 32, 39–55. [Google Scholar] [CrossRef]
- Xiong, L.; Lan, D.; Liang, H.; Chen, L.; Wang, Q. Grafting TiO2 nanoparticles onto carbon fiber via “thiol-ene” click chemistry and its photodegradation performance for methyl orange. Mater. Lett. 2018, 211, 296–299. [Google Scholar] [CrossRef]
- Rahmati, R.; Nayebi, B.; Ayati, B. Investigating the effect of hydrogen peroxide as an electron acceptor in increasing the capability of slurry photocatalytic process in dye removal. Water Sci. Technol. 2021, 83, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Das, G.S.; Schütt, F.; Adelung, R.; Mishra, Y.K.; Tripathi, K.M.; Kim, T.Y. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: Degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater. 2019, 11, 8. [Google Scholar] [CrossRef]
- Zhang, Y.; Hawboldt, K.; Zhang, L.; Lu, J.; Chang, L.; Dwyer, A. Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Appl. Catal. A Gen. 2022, 630, 118460. [Google Scholar] [CrossRef]
- Shah, S.S.; Sharma, T.; Dar, B.A.; Bamezai, R.K. Adsorptive removal of methyl orange dye from aqueous solution using populous leaves: Insights from kinetics, thermodynamics and computational studies. Environ. Chem. Ecotoxicol. 2021, 3, 172–181. [Google Scholar] [CrossRef]
- Khojasteh, H.; Salavati-Niasari, M.; Safajou, H.; Safardoust-Hojaghan, H. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diam. Relat. Mater. 2017, 79, 133–144. [Google Scholar] [CrossRef]
- Liu, G.Q.; Pan, X.J.; Li, J.; Li, C.; Ji, C.L. Facile preparation and characterization of anatase TiO2/nanocellulose composite for photocatalytic degradation of methyl orange. J. Saudi Chem. Soc. 2021, 25, 101383. [Google Scholar] [CrossRef]
- Zang, Y.; Li, L.; Xu, Y.; Zuo, Y.; Li, G. Hybridization of brookite TiO2with g-C3N4: A visible-light-driven photocatalyst for As3+oxidation, MO degradation and water splitting for hydrogen evolution. J. Mater. Chem. A 2014, 2, 15774–15780. [Google Scholar] [CrossRef]
- Pan, D.; Jiao, J.; Li, Z.; Guo, Y.; Feng, C.; Liu, Y.; Wang, L.; Wu, M. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 2015, 3, 2405–2413. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Xu, S.; Ruan, Y. Carbon quantum dot-sensitized hollow TiO2 spheres for high-performance visible light photocatalysis. New J. Chem. 2021, 45, 8693–8700. [Google Scholar] [CrossRef]
- Ouyang, K.; Xie, S.; Ma, X. Photocatalytic activity of TiO2 supported on multi-walled carbon nanotubes under simulated solar irradiation. Ceram. Int. 2013, 39, 7531–7536. [Google Scholar] [CrossRef]
- Yin, B.; Wang, J.T.; Xu, W.; Long, D.H.; Qiao, W.M.; Ling, L.C. Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation. Xinxing Tan Cailiao/New Carbon Mater. 2013, 28, 47–54. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Process. 2020, 114, 105088. [Google Scholar] [CrossRef]
Adsorbent | Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
TiO2 | 7.6 | 0.02 | 7.58 |
TC-10 | 56.6 | 0.12 | 8.09 |
TC-20 | 69.8 | 0.19 | 10.80 |
TC-30 | 78.1 | 0.17 | 8.85 |
TC-50 | 120 | 0.28 | 9.43 |
Photocatalyst | Equations | R2 | k (min−1) |
---|---|---|---|
TiO2 | Ln(C/Co) = −0.0051X − 0.0395 | 0.8745 | 0.005 |
TC-50 | Ln(C/Co) = −0.007X − 0.3511 | 0.9728 | 0.007 |
TC-30 | Ln(C/Co) = −0.00106X − 0.4488 | 0.9307 | 0.001 |
TC-20 | Ln(C/Co) = −0.0146X − 0.5349 | 0.9229 | 0.015 |
TC-10 | Ln(C/Co) = −0.05X − 0.1861 | 0.8975 | 0.050 |
TC-10 (H2O2) | Ln(C/Co) = −0.287X + 0.6119 | 0.9002 | 0.287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntuli, T.D.; Sikeyi, L.L.; Dziike, F.; Coville, N.J.; Nxumalo, E.N.; Maubane-Nkadimeng, M.S. Improved Adsorption and Photocatalytic Degradation of Methyl Orange by Onion-like Nanocarbon/TiO2 Nanocomposites. Appl. Sci. 2023, 13, 5125. https://doi.org/10.3390/app13085125
Ntuli TD, Sikeyi LL, Dziike F, Coville NJ, Nxumalo EN, Maubane-Nkadimeng MS. Improved Adsorption and Photocatalytic Degradation of Methyl Orange by Onion-like Nanocarbon/TiO2 Nanocomposites. Applied Sciences. 2023; 13(8):5125. https://doi.org/10.3390/app13085125
Chicago/Turabian StyleNtuli, Themba D., Ludwe L. Sikeyi, Faria Dziike, Neil J. Coville, Edward N. Nxumalo, and Manoko S. Maubane-Nkadimeng. 2023. "Improved Adsorption and Photocatalytic Degradation of Methyl Orange by Onion-like Nanocarbon/TiO2 Nanocomposites" Applied Sciences 13, no. 8: 5125. https://doi.org/10.3390/app13085125
APA StyleNtuli, T. D., Sikeyi, L. L., Dziike, F., Coville, N. J., Nxumalo, E. N., & Maubane-Nkadimeng, M. S. (2023). Improved Adsorption and Photocatalytic Degradation of Methyl Orange by Onion-like Nanocarbon/TiO2 Nanocomposites. Applied Sciences, 13(8), 5125. https://doi.org/10.3390/app13085125