Reliability Techniques in Engineering Projects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farsi, M.A.; Zio, E. Industry 4.0: Some challenges and opportunities for Reliability Engineering. Int. J. Reliab. Risk Saf. Theory Appl. 2019, 2, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Zio, E. Reliability engineering: Old problems and new challenges. Reliab. Eng. Syst. Saf. 2009, 94, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Popp, L.; Müller, K. Technical reliability of shipboard technologies for the application of alternative fuels. Energy Sustain. Soc. 2021, 11, 23. [Google Scholar] [CrossRef]
- Meex, E.; Hollberg, A.; Knapen, E.; Hildebrand, L.; Verbeeck, G. Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Build Environ. 2018, 133, 228–236. [Google Scholar] [CrossRef]
- Rauzy, A. New Challenges and Opportunities in Reliability Engineering of Complex Technical Systems. Reliab. Eng. Comput. Intell. 2021, 976, 91–114. [Google Scholar]
- Aunión-Villa, J.; Gómez-Chaparro, M.; García-Sanz-Calcedo, J. Assessment of the maintenance costs of electro-medical equipment in Spanish hospitals. Expert Rev. Med. Devices 2020, 17, 855–865. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, J.; Mei, F.; Li, K.; Qi, X. Reliability evaluation method of distribution network considering the integration impact of distributed integrated energy system. Energy Rep. 2022, 8, 422–432. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Sánchez-Barroso, G.; Aunión-Villa, J.; García-Sanz-Calcedo, J. Markov model of computed tomography equipment. Eng. Fail. Anal. 2021, 127, 105506. [Google Scholar] [CrossRef]
- González Domínguez, J.; Sánchez-Barroso, G.; García-Sanz-Calcedo, J.; Sokol, M. Condition-based maintenance of ceramic curved tiles roof in Primary Healthcare buildings using Markov chains. J. Build. Eng. 2021, 43, 102517. [Google Scholar] [CrossRef]
- Gómez-Chaparro, M.; García-Sanz-Calcedo, J.; Aunión-Villa, J. Maintenance in hospitals with less than 200 beds: Efficiency indicators. Build. Res. Inf. 2020, 48, 526–537. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Sánchez-Barroso, G.; García-Sanz-Calcedo, J. Preventive maintenance optimisation of accessible flat roofs in healthcare centres using the Markov chain. J. Build. Eng. 2020, 32, 101775. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Bagchi, A.; Hosseini, M.R.; Vilutienė, T.; Zeynalian, M. Enhancement of bid decision-making in construction projects: A reliability analysis approach. J. Civ. Eng. Manag. 2021, 27, 149–161. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Sánchez-Barroso, G.; García-Sanz-Calcedo, J. Scheduling of preventive maintenance in healthcare buildings using Markov chain. Appl. Sci. 2020, 10, 5263. [Google Scholar] [CrossRef]
- Hao, T.; Huang, J.; He, X.; Li, L.; Jones, P. A machine learning-enhanced design optimizer for urban cooling. Indoor Built. Environ. 2023, 2, 355–374. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Sánchez-Barroso, G.; García-Sanz-Calcedo, J.; Neves, N. Cox proportional hazards model used for predictive analysis of the energy consumption of healthcare buildings. Energy Build. 2022, 257, 111784. [Google Scholar] [CrossRef]
- Botejara-Antúnez, M.; González Domínguez, J.; García-Sanz-Calcedo, J. Life-Cycle Analysis methodology for HVAC ductwork in healthcare buildings. Indoor Built. Environ. 2023; in press. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Ebead, U.; Shahria Alam, M. Machine learning-based shear capacity prediction and reliability analysis of shear-critical RC beams strengthened with inorganic composites. Case Stud. Constr. Mater. 2022, 16, e01008. [Google Scholar] [CrossRef]
- Meeker William, Q.; Hong, Y. Reliability meets big data: Opportunities and challenges. Qual. Eng. 2014, 26, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lin, Y.; Wang, S.; Wang, S.; Zhu, S. Storage Reliability Assessment Method for Aerospace Electromagnetic Relay Based on Belief Reliability Theory. Appl. Sci. 2022, 12, 8637. [Google Scholar] [CrossRef]
- Iovanas, D.M.; Dumitrascu, A.E. Comparative Reliability Analysis of Milling Teeth Manufactured by Conventional Cutting Processes and Laser Cladding. Appl. Sci. 2022, 12, 7133. [Google Scholar] [CrossRef]
- Grundler, A.; Dazer, M.; Herzig, T. Statistical Power Analysis in Reliability Demonstration Testing: The Probability of Test Success. Appl. Sci. 2022, 12, 6190. [Google Scholar] [CrossRef]
- Bepary, M.K.; Sabquat, B.M.; Talukder, B.; Rahman, M.T. DRAM Retention Behavior with Accelerated Aging in Commercial Chips. Appl. Sci. 2022, 12, 4332. [Google Scholar] [CrossRef]
- Shu, Y.; Shen, Z.; Xu, L.; Zhang, K.; Yang, C. Inversion Analysis of Impervious Curtain Permeability Coefficient Using Calcium Leaching Model, Extreme Learning Machine, and Optimization Algorithms. Appl. Sci. 2022, 12, 3272. [Google Scholar] [CrossRef]
- Carretero-Ayuso, M.J.; Sánchez-Barroso, G.; González-Domínguez, J.; García-Sanz-Calcedo, J. Failure Modes in Electricity and Telecommunication Facilities in Dwellings in Spain. Appl. Sci. 2021, 11, 5274. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J. Progress of Process Monitoring for the Multi-Mode Process: A Review. Appl. Sci. 2022, 12, 7207. [Google Scholar] [CrossRef]
- Liu, B.; Ananda, M.M.A. New Insight into Reliability Data Modeling with an Exponentiated Composite Exponential-Pareto Model. Appl. Sci. 2023, 13, 645. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sanz-Calcedo, J.; Sánchez-Barroso, G.; González-Domínguez, J.; Botejara-Antúnez, M. Reliability Techniques in Engineering Projects. Appl. Sci. 2023, 13, 4364. https://doi.org/10.3390/app13074364
García-Sanz-Calcedo J, Sánchez-Barroso G, González-Domínguez J, Botejara-Antúnez M. Reliability Techniques in Engineering Projects. Applied Sciences. 2023; 13(7):4364. https://doi.org/10.3390/app13074364
Chicago/Turabian StyleGarcía-Sanz-Calcedo, Justo, Gonzalo Sánchez-Barroso, Jaime González-Domínguez, and Manuel Botejara-Antúnez. 2023. "Reliability Techniques in Engineering Projects" Applied Sciences 13, no. 7: 4364. https://doi.org/10.3390/app13074364
APA StyleGarcía-Sanz-Calcedo, J., Sánchez-Barroso, G., González-Domínguez, J., & Botejara-Antúnez, M. (2023). Reliability Techniques in Engineering Projects. Applied Sciences, 13(7), 4364. https://doi.org/10.3390/app13074364