Cu(In,Ga)Se2:Te Thin Films for Stoichiometric Compensation by Using Co-Sputtering and Rapid Thermal Annealing †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atasoy, Y.; Başol, B.M.; Polat, İ.; Tomakin, M.; Parlak, M.; Bacaksız, E. Cu(In,Ga)(Se,Te)2 pentenary thin films formed by reaction of precursor layers. Thin Solid Films. 2015, 592, 189–194. [Google Scholar] [CrossRef]
- Kim, N.-H.; Jun, Y.-K.; Lee, W.-S. Co-Sputtered and Rapid-Thermal-Annealed CIAS Thin Films Using CuSe2/In/Al Triple Targets of Varying In/Al Compositions. J. Nanosci. Nanotechnol. 2016, 16, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Teknetzi, I.; Holgersson, S.; Ebin, B. Valuable metal recycling from thin film CIGS solar cells by leaching under mild conditions. Sol. Energy Mater. Sol. Cells 2023, 252, 112178. [Google Scholar] [CrossRef]
- Huang, P.C.; Sung, C.C.; Chen, J.H.; Hsiao, R.C.; Hsu, C.Y. Effect of selenization and sulfurization on the structure and performance of CIGS solar cell. J. Mater. Sci. -Mater. Electron. 2018, 29, 1444–1450. [Google Scholar] [CrossRef]
- Za’abar, F.I.; Yusoff, Y.; Mohamed, H.; Abdullah, S.F.; Zuhdi, A.W.M.; Amin, N.; Chelvanathan, P.; Bahrudin, M.S.; Rahman, K.S.; Samsudin, N.A.; et al. A numerical investigation on the combined effects of MoSe2 interface layer and graded bandgap absorber in CIGS thin film solar cells. Coatings 2021, 11, 930. [Google Scholar] [CrossRef]
- Mabvuer, F.T.; Nya, F.T.; Kenfack, G.M.D.; Laref, A. Lowering Cost Approach for CIGS-Based Solar Cell Through Optimizing Band Gap Profile and Doping of Stacked Active Layers—SCAPS Modeling. ACS Omega 2023, 8, 3917–3928. [Google Scholar] [CrossRef]
- Kim, N.-H.; Oh, S.; Lee, W.S. Non-selenization method using sputtering deposition with a CuSe2 target for CIGS thin film. J. Korean Phys. Soc. 2012, 61, 1177–1180. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, Z.Q.; Shen, C.H.; Wang, L.Q.; Ha, C.T.; Peng, C. Cu(In,Ga)Se2 films prepared by sputtering with a chalcopyrite Cu(In,Ga)Se2 quaternary alloy and In targets. J. Mater. Sci. -Mater. Electron. 2011, 23, 493–500. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, J.; Han, S.; Hao, S.; Zhu, Q.; Gong, Y.; Yan, W.; Huang, W.; Xin, H. Structure engineering of solution-processed precursor films for low temperature fabrication of CuIn(S,Se)2 solar cells. Sol. Energy 2021, 220, 796–801. [Google Scholar] [CrossRef]
- Jheng, B.T.; Liu, P.T.; Wu, M.C.; Shieh, H.P. A non-selenization technology by co-sputtering deposition for solar cell applications. Opt. Lett. 2012, 37, 2760–2762. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Kim, N.-H. Cigs Thin Films Sputtered by Using Chalcogenide Cuse2 With Multilayer-Stack-Structure and Rapid Thermal Annealing. Chalcogenide Lett. 2014, 11, 71–77. Available online: http://www.chalcogen.ro/71_Oh.pdf (accessed on 27 February 2023).
- Bouchama, I.; Djessas, K.; Saeed, M.A. Physical properties of CuIn0.7Ga0.3Se2 ingot and thin films prepared by one-step rf-magnetron sputtering from single-target material. J. Mol. Struct. 2020, 1217, 128457. [Google Scholar] [CrossRef]
- Kim, N.-H.; Jun, Y.K.; Cho, G.B. Se-loss-induced CIS Thin Films in RTA Process after Co-sputtering Using CuSe2 and InSe2 Targets. J. Electr. Eng. Technol. 2014, 9, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Bouabid, K.; Ihlal, A.; Manar, A.; Outzourhit, A.; Ameziane, E.L. Effect of deposition and annealing parameters on the properties of electrodeposited CuIn1− xGaxSe2 thin films. Thin Solid Films. 2005, 488, 62–67. [Google Scholar] [CrossRef]
- Ahmed, E.; Zegadi, A.; Hill, A.E.; Pilkington, R.D.; Tomlinson, R.D.; Dost, A.A.; Ahmed, W.; Leppävuori, S.; Levoska, J.; Kusmartseva, O. The influence of annealing processes on the structural, compositional and electro-optical properties of CuIn0.75Ga0.25Se2 thin films. J. Mater. Sci.-Mater. Electron. 1996, 7, 213–219. [Google Scholar] [CrossRef]
- Do, Q.; Manh, N.T.; Triet, L.N.D.; Choi, Y.; Lee, Y.-W.; Cho, Y.; Lee, K.J.; Cho, N. Controlling the morphology of solution-processed CuIn(SSe)2 absorber layers by film thickness and annealing temperature. Mol. Cryst. Liquid Cryst. 2020, 707, 126–139. [Google Scholar] [CrossRef]
- Desarada, S.V.; Chavan, K.B.; Chaure, N.B. Effect of Different Annealing Techniques on CIGS Deposited Using One-Step Single-Target Sputtering. J. Electron. Mater. 2023, 1–7. [Google Scholar] [CrossRef]
- Singh, H.; Bharti, A.; Kumar, A.; Goyal, N.; Gill, P.S. Crystal Structure Characterization and Morphology of Tellurium Doped Multicomponent Chalcogenide Copper Indium Gallium Diselenide Compound. Mater. Focus 2017, 6, 611–617. [Google Scholar] [CrossRef]
- Fiat, S.; Koralli, P.; Bacaksiz, E.M.; Giannakopoulos, K.P.; Kompitsas, M.; Manolakos, D.E.; Çankaya, G.Ü. The influence of stoichiometry and annealing temperature on the properties of CuIn0. 7Ga0.3Se2 and CuIn0.7Ga0.3Te2 thin films. Thin Solid Films 2013, 545, 64–70. [Google Scholar] [CrossRef]
- Singh, U.P.; Shafarman, W.N.; Birkmire, R.W. Surface sulfurization studies of Cu(InGa)Se2 thin film. Sol. Energy Mater. Sol. Cells 2006, 90, 623–630. [Google Scholar] [CrossRef]
- Kim, S.; Kim, N.-H. Impurity phases and optoelectronic properties of CuSbSe2 thin films prepared by cosputtering process for absorber layer in solar cells. Coatings 2020, 10, 1209. [Google Scholar] [CrossRef]
- Oh, S.; Park, Y.S.; Ko, P.J.; Kim, N.-H. Effects of rapid thermal treatment on properties of magnetron-sputtered NiO thin films for supercapacitor applications. J. Nanosci. Nanotechnol. 2018, 18, 6213–6219. [Google Scholar] [CrossRef] [PubMed]
- Khosroshahi, R.; Dehghani, M.; Tehrani, N.A.; Taghavinia, N.; Bagherzadeh, M. Optimization of selenization process to remove Ga-induced pin-holes in CIGS thin films. Sol. Energy 2022, 236, 175–181. [Google Scholar] [CrossRef]
- Pech, S.; Kim, S.; Kim, N.-H. Magnetron Sputter-Deposited β-Ga2O3 Films on c-Sapphire Substrate: Effect of Rapid Thermal Annealing Temperature on Crystalline Quality. Coatings 2022, 12, 140. [Google Scholar] [CrossRef]
- Erkan, S.; Başol, B.M.; Atasoy, Y.A.; Çiriş, A.; Yüksel, Ö.F.; Bacaksız, E. Cu(In,Ga)Te2 film growth by a two-stage technique utilizing rapid thermal processing. Semicond. Sci. Technol. 2019, 34, 035011. [Google Scholar] [CrossRef]
- Atasoy, Y.; Başol, B.M.; Olğar, M.A.; Tomakin, M.U.; Bacaksız, E. Cu(In,Ga)(Se,Te)2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation. Thin Solid Films 2018, 649, 30–37. [Google Scholar] [CrossRef]
- Kim, N.-H.; Sung, B.S.; Jun, Y.K.; Chung, D.H.; Lee, W.S. Low-temperature, rapid thermal annealing of CIS thin films deposited by using a co-sputtering process with in and CuSe2 targets. J. Korean Phys. Soc. 2015, 66, 1001–1008. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Hill, A.E.; Pilkington, R.D.; Cowpe, J.S.; Hisek, J.; Bagnall, D.M. Single step deposition method for nearly stoichiometric CuInSe2 thin films. Thin Solid Films 2011, 519, 3107–3112. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhou, L.; Wang, Y.; Xue, Y.; Teng, Y. Effect of Al content on the performance of Cu(In,Al)Se2 powders prepared by mechanochemical process. Mater. Sci. Semicond. Process 2014, 18, 128–134. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Prachamon, J.; Manyam, J.; Krongsuk, S.; Thongbai, P.; Srepusharawoot, P. Colossal dielectric permittivity, reduced loss tangent and the microstructure of Ca1−xCdxCu3Ti4O12−2yF2y ceramics. RSC Adv. 2021, 11, 16396–16403. [Google Scholar] [CrossRef]
- Shokeen, P.; Jain, A.; Kapoor, A.; Gupta, V. Thickness and Annealing Effects on the Particle Size of PLD Grown Ag Nanofilms. Plasmonics 2016, 11, 669–675. [Google Scholar] [CrossRef]
- Wang, C.-J.; Shei, S.-C.; Chang, S.-J. Novel solution process for synthesis of CIGS nanoparticles using polyetheramine as solvent. Mater. Lett. 2014, 122, 52–54. [Google Scholar] [CrossRef]
- Islam, M.A.; Huda, Q.; Hossain, M.S.; Aliyu, M.M.; Karim, M.R.; Sopian, K.; Amin, N. High quality 1 μm thick CdTe absorber layers grown by magnetron sputtering for solar cell application. Curr. Appl. Phys. 2013, 13, S115–S121. [Google Scholar] [CrossRef]
- Hao, S.; Yu, S.; Liu, X.; Li, B.; Han, S.; Xin, H.; Yan, W.; Huang, W. Effect of K Doping on the Performance of Aqueous Solution-Processed Cu(In,Ga)Se2 Solar Cell. Adv. Energy Sustain. Res. 2022, 3, 2200006. [Google Scholar] [CrossRef]
- Kumar, S.; Asokan, K.; Singh, R.K.; Chatterjee, S.; Kanjilal, D.; Ghosh, A.K. Investigations on structural and optical properties of ZnO and ZnO: Co nanoparticles under dense electronic excitations. RSC Adv. 2014, 4, 62123–62131. [Google Scholar] [CrossRef]
- Kim, N.H.; Yoo, M.H.; Ko, P.J.; Lee, W.S. Deviations from stoichiometry and molecularity in non-stoichiometric Ag-In-Se thin films: Effects on the optical and the electrical properties. J. Korean Phys. Soc. 2016, 69, 1817–1823. [Google Scholar] [CrossRef]
- Marai, A.B.; Belgacem, J.B.; Ayadi, J.B.; Djessas, K.; Alaya, S. Structural and optical properties of CuIn1-xGaxSe2 nanoparticles synthesized by solvothermal route. J. Alloys Compd. 2016, 658, 961–966. [Google Scholar] [CrossRef]
- Goh, K.H.; Haseeb, A.S.M.A.; Wong, Y.H. Physical and electrical properties of thermal oxidized Sm2O3 gate oxide thin film on Si substrate: Influence of oxidation durations. Thin Solid Films 2016, 606, 80–86. [Google Scholar] [CrossRef]
- Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-ray Diffraction. Nanomaterials 2020, 10, 1627. [Google Scholar] [CrossRef]
- Khallaf, H.; Chai, G.; Lupan, O.; Chow, L.; Park, S.; Schulte, A. Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 2009, 255, 4129–4134. [Google Scholar] [CrossRef]
- Reddy, D.S.; Rao, K.N.; Gunasekhar, K.R.; Reddy, N.K.; Kumar, K.S.; Reddy, P.S. Annealing effect on structural and electrical properties of thermally evaporated Cd1−xMnxS nanocrystalline films. Mater. Res. Bull. 2008, 43, 3245–3251. [Google Scholar] [CrossRef]
- Gu, Y.; Li, X.; Yu, W.; Gao, X.; Zhao, J.; Yang, C. Microstructures, electrical and optical characteristics of ZnO thin films by oxygen plasma-assisted pulsed laser deposition. J. Cryst. Growth 2007, 305, 36–39. [Google Scholar] [CrossRef]
- Chandramohan, S.; Sathyamoorthy, R.; Sudhagar, P.; Kanjilal, D.; Kabiraj, D.; Asokan, K. Optical properties of swift ion beam irradiated CdTe thin films. Thin Solid Films 2008, 516, 5508–5512. [Google Scholar] [CrossRef]
- Sathyamoorthy, R.; Narayandass, S.K.; Mangalaraj, D. Effect of substrate temperature on the structure and optical properties of CdTe thin film. Sol. Energy Mater. Sol. Cells 2003, 76, 339–346. [Google Scholar] [CrossRef]
- Oh, M.S.; Hwang, D.K.; Seong, D.J.; Hwang, H.S.; Park, S.J.; Kim, E.D. Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen radicals. J. Electrochem. Soc. 2008, 155, D599. [Google Scholar] [CrossRef]
- Nicolaou, C.; Zacharia, A.; Delimitis, A.; Itskos, G.; Giapintzakis, J. Single-step growth of high quality CIGS/CdS heterojunctions using pulsed laser deposition. Appl. Surf. Sci. 2020, 511, 145547. [Google Scholar] [CrossRef]
- Mansour, A.M.; Nasr, M.; Saleh, H.A.; Mahmoud, G.M. Physical characterization of 5′,5″-dibromo-o-cresolsulfophthalein (BCP) spin-coated thin films and BCP/p-Si based diode. Appl. Phys. A-Mater. Sci. Process. 2019, 125, 625. [Google Scholar] [CrossRef]
- Kodalle, T.; Greiner, D.; Brackmann, V.; Prietzel, K.; Scheu, A.; Bertram, T.; Reyes-Figueroa, P.; Unold, T.; Abou-Ras, D.; Schlatmann, R.; et al. Glow discharge optical emission spectrometry for quantitative depth profiling of CIGS thin-films. J. Anal. At. Spectrom. 2019, 34, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Neumann, H.; Tomlinson, R.D. Relation between electrical properties and composition in CuInSe2 single crystals. Sol. Cells 1990, 28, 301–313. [Google Scholar] [CrossRef]
- Müller, J.; Nowoczin, J.; Schmitt, H. Composition, structure and optical properties of sputtered thin films of CuInSe2. Thin Solid Films 2006, 496, 364–370. [Google Scholar] [CrossRef]
- Kim, N.H.; Ko, P.J.; Cho, G.B.; Park, C.I. Rapid laser annealing of Cu(In,Ga)Se2 thin films by using a continuous wave Nd:YAG laser (λ0 = 532 nm). J. Korean Phys. Soc. 2017, 70, 809–815. [Google Scholar] [CrossRef]
- Suresh, S.; Rokke, D.J.; Drew, A.A.; Alruqobah, E.; Agrawal, R.; Uhl, A.R. Extrinsic Doping of Ink-Based Cu(In,Ga)(S,Se)2-Absorbers for Photovoltaic Applications. Adv. Energy Mater. 2022, 12, 2103961. [Google Scholar] [CrossRef]
- Ou, C.Y.; Som, S.; Lu, C.H.; Gupta, K.K.; Chaurasiya, R. Photovoltaic characteristics and computational simulation of samarium-ion doped Cu(In, Ga)Se2 thin films prepared via a non-vacuum coating process. J. Alloys Compd. 2021, 881, 160377. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, Y.; Jin, Q.; Tan, J.; Kang, S.; Qiu, J.; Tai, K. Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance. ACS Appl. Mater. Interfaces 2019, 11, 38075–38083. [Google Scholar] [CrossRef]
- Shinde, U.P. Hall coefficient, mobility and carrier concentration as a function of composition and thickness of Zn-Te thin films. Adv. Appl. Sci. Res. 2015, 4, 215–220. Available online: https://api.semanticscholar.org/CorpusID:55769927 (accessed on 27 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech, S.; Rou, Y.J.; Kim, S.; Lee, K.-Y.; Kim, N.-H. Cu(In,Ga)Se2:Te Thin Films for Stoichiometric Compensation by Using Co-Sputtering and Rapid Thermal Annealing. Appl. Sci. 2023, 13, 4284. https://doi.org/10.3390/app13074284
Pech S, Rou YJ, Kim S, Lee K-Y, Kim N-H. Cu(In,Ga)Se2:Te Thin Films for Stoichiometric Compensation by Using Co-Sputtering and Rapid Thermal Annealing. Applied Sciences. 2023; 13(7):4284. https://doi.org/10.3390/app13074284
Chicago/Turabian StylePech, Sakal, Yun Ju Rou, Sara Kim, Kang-Yeon Lee, and Nam-Hoon Kim. 2023. "Cu(In,Ga)Se2:Te Thin Films for Stoichiometric Compensation by Using Co-Sputtering and Rapid Thermal Annealing" Applied Sciences 13, no. 7: 4284. https://doi.org/10.3390/app13074284
APA StylePech, S., Rou, Y. J., Kim, S., Lee, K.-Y., & Kim, N.-H. (2023). Cu(In,Ga)Se2:Te Thin Films for Stoichiometric Compensation by Using Co-Sputtering and Rapid Thermal Annealing. Applied Sciences, 13(7), 4284. https://doi.org/10.3390/app13074284