The Comprehensive Reduction Capacity of Five Riparian Vegetation Buffer Strips for Primary Pollutants in Surface Runoff
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Reduction of TSS
3.2. Reduction of TN
3.3. Reduction of NH3-N
3.4. Reduction of TP
3.5. Reduction of COD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, S. Diffuse Agricultural Pollution of Groundwater: Addressing Impacts in Denmark and Eastern England. Water Qual. Res. J. 2023, 58, 14–21. [Google Scholar] [CrossRef]
- Valkama, E.; Usva, K.; Saarinen, M.; Uusi-Kämppä, J. A Meta-Analysis on Nitrogen Retention by Buffer Zones. J. Environ. Qual. 2019, 48, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The Deep Challenge of Nitrate Pollution in River Water of China. Sci. Total Environ. 2021, 770, 144674. [Google Scholar] [CrossRef]
- Shyamala, S.; Arul Manikandan, N.; Pakshirajan, K.; Tang, V.T.; Rene, E.R.; Park, H.S.; Behera, S.K. Phytoremediation of Nitrate Contaminated Water Using Ornamental Plants. J. Water Supply Res. Technol. AQUA 2019, 68, 731–743. [Google Scholar] [CrossRef]
- Palmer, M.A.; Stewart, G.A. Ecosystem Restoration Is Risky … but We Can Change That. One Earth 2020, 3, 661–664. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, C.; Sun, Y.; Ma, C. Effect and Mechanism of Modification Treatment on Ammonium and Phosphate Removal by Ferric-Modified Zeolite. Environ. Technol. 2019, 40, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Zhang, M. Major Factors Influencing the Efficacy of Vegetated Buffers on Sediment Trapping: A Review and Analysis. J. Environ. Qual. 2008, 37, 1667–1674. [Google Scholar] [CrossRef]
- Latsiou, A.; Kouvarda, T.; Stefanidis, K.; Papaioannou, G.; Gritzalis, K.; Dimitriou, E. Pressures and Status of the Riparian Vegetation in Greek Rivers: Overview and Preliminary Assessment. Hydrology 2021, 8, 55. [Google Scholar] [CrossRef]
- Rojas, A. Research Repository. Bursa Malaysia 2020, 60, 315–493. [Google Scholar]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Elliott, E.M.; Shields, C.A.; Kendall, C. Tracking Nonpoint Source Nitrogen Pollution in Human-Impacted Watersheds. Environ. Sci. Technol. 2011, 45, 8225–8232. [Google Scholar] [CrossRef]
- Wang, S.; Pi, Y.; Jiang, Y.; Pan, H.; Wang, X.; Wang, X.; Zhou, J.; Zhu, G. Nitrate Reduction in the Reed Rhizosphere of a Riparian Zone: From Functional Genes to Activity and Contribution. Environ. Res. 2020, 180, 108867. [Google Scholar] [CrossRef]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing Riparian Buffer Strips to Optimise Ecosystem Services: A Review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.-Y.; Rao, C.; Jiang, C.; Tan, Y.C.; Yu, T.; Yu, E.J.; Wu, P. Soil Microbial Community Dynamics Indicate Disruption of Nitrogen Cycling by Pollution in Vegetation Buffer Zones. Pedobiologia 2021, 85–86, 150722. [Google Scholar] [CrossRef]
- Zongchu, H.; Xiangmin, Z.; Chunxia, Y. The Study of Nonirrigated Farmaland Nitrogen and Phosphorus Loss with Surface Runoff in ShangHai (in Chinese). Yunnan Geogr. Environ. Res. 2007, 19, 7–11. [Google Scholar]
- Jian-qiang, W.; Shen-fa, H.; Jian, W.; Li-jun, X. Pollutant Removal Efficiency of Sward Buffers to Runoff and the Correlation with Biomass. J. Lake Sci. 2008, 20, 761–765. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shao, X.; Sheng, Z. Field Experiments on Reducing Pollutants in Agricultural-Drained Water Using Soil-Vegetation Buffer Strips. Pol. J. Environ. Stud. 2016, 25, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Schoonover, J.E.; Williard, K.W.J.; Zaczek, J.J.; Mangun, J.C.; Carver, A.D. Nutrient Attenuation in Agricultural Surface Runoff by Riparian Buffer Zones in Southern Illinois, USA. Agrofor. Syst. 2005, 64, 169–180. [Google Scholar] [CrossRef]
- Syversen, N. Effect and Design of Buffer Zones in the Nordic Climate: The Influence of Width, Amount of Surface Runoff, Seasonal Variation and Vegetation Type on Retention Efficiency for Nutrient and Particle Runoff. Ecol. Eng. 2005, 24, 483–490. [Google Scholar] [CrossRef]
- Ramião, J.P.; Carvalho-Santos, C.; Pinto, R.; Pascoal, C. Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin. Water 2022, 14, 3962. [Google Scholar] [CrossRef]
- Hill, A.R. Groundwater Nitrate Removal in Riparian Buffer Zones: A Review of Research Progress in the Past 20 Years. Biogeochemistry 2019, 143, 347–369. [Google Scholar] [CrossRef]
- Bolo, P.; Brachet, C. Agricultural Non-Point Source Pollution. Spat. Manag. Risks 2010, 39–70. [Google Scholar] [CrossRef]
- Piniewski, M.; Marcinkowski, P.; Kardel, I.; Giełczewski, M.; Izydorczyk, K.; Fratczak, W. Spatial Quantification of Non-Point Source Pollution in a Meso-Scale Catchment for an Assessment of Buffer Zones Efficiency. Water 2015, 7, 1889–1920. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Wang, Y.; Chu, Z. Reduction Effect of Non-Point Pollution in Erhai Lake Basin through Sward Buffer Strips. Chin. J. Environ. Eng. 2015, 9, 4138–4144. [Google Scholar]
- Huaien, L.; Yaping, Z.; Ming, C.; Qinghua, W.; Yue, L. Quantitative Calculation Methods for Vegetative Filter Strips. Chin. J. Ecol. 2006, 25, 108–112. [Google Scholar] [CrossRef]
- Oshunsanya, S.O.; Li, Y.; Yu, H. Vetiver Grass Hedgerows Significantly Reduce Nitrogen and Phosphorus Losses from Fertilized Sloping Lands. Sci. Total Environ. 2019, 661, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-Analysis of Nitrogen Removal in Riparian Buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Lyu, C.; Li, X.; Yuan, P.; Song, Y.; Gao, H.; Liu, X.; Liu, R.; Yu, H. Nitrogen Retention Effect of Riparian Zones in Agricultural Areas: A Meta-Analysis. J. Clean. Prod. 2021, 315, 128143. [Google Scholar] [CrossRef]
- Shen-fa, H.; Jian-qiang, W.; Tang, H.; Jian, W.; Min, W. Study of Clarification for Riparian-Buffer to Non-Point Pollution. Adv. Water Sci. 2008, 19, 722–727. [Google Scholar] [CrossRef]
- Jian, W.; Min, W.; Jianqiang, W.; Zesheng, Y.; Hao, T. Optimization of Plants Community of Riparian Buffer Zones. J. Ecol. Rural Environ. 2008, 24, 42–45. [Google Scholar]
- Mao, C.Y.; Wang, Y.Q.; Ma, R.; Xia, Y.; Wang, J.; Xiang, L.J.; Zhang, S.H. Effects of Soil and Water Conservation and Water Purification by Vegetative Filter Strips. Beijing Linye Daxue Xuebao/J. Beijing For. Univ. 2017, 39, 65–74. [Google Scholar] [CrossRef]
- Petersen, R.J.; Blicher-Mathiesen, G.; Rolighed, J.; Andersen, H.E.; Kronvang, B. Three Decades of Regulation of Agricultural Nitrogen Losses: Experiences from the Danish Agricultural Monitoring Program. Sci. Total Environ. 2021, 787, 147619. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.R.; Rasera, K.; Parron, L.M.; Brito, A.G.; Ferreira, M.T. Nutrient Removal Effectiveness by Riparian Buffer Zones in Rural Temperate Watersheds: The Impact of No-till Crops Practices. Agric. Water Manag. 2015, 149, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, I.; Gall, H.; Lin, H. Natural and Anthropogenic Controls on the Frequency of Preferential Flow Occurrence in a Wastewater Spray Irrigation Field. Agric. Water Manag. 2016, 178, 248–257. [Google Scholar] [CrossRef]
- Dlamini, J.C.; Cardenas, L.M.; Tesfamariam, E.H.; Dunn, R.M.; Loick, N.; Charteris, A.F.; Cocciaglia, L.; Vangeli, S.; Blackwell, M.S.A.; Upadhayay, H.R.; et al. Riparian Buffer Strips Influence Nitrogen Losses as Nitrous Oxide and Leached N from Upslope Permanent Pasture. Agric. Ecosyst. Environ. 2022, 336, 108031. [Google Scholar] [CrossRef]
- Gao, L.; Hu, X.; Ma, C.; Kuang, H.; Qi, H.; He, Z. Geoenvironmental Risk Evaluation of High-Efficiency Eco-Economic Zone in Weifang City, China. Nat. Hazards Rev. 2020, 21, 05020005. [Google Scholar] [CrossRef]
- Wu, J.Q.; Xiong, L.J.; Sha, C.Y. Removal of N, P from Seepage and Runoff by Different Vegetated and Slope Buffer Strips. Water Sci. Technol. 2020, 82, 351–363. [Google Scholar] [CrossRef]
- Berger, M.; Canty, S.W.J.; Tuholske, C.; Halpern, B.S. Sources and Discharge of Nitrogen Pollution from Agriculture and Wastewater in the Mesoamerican Reef Region. Ocean Coast. Manag. 2022, 227, 106269. [Google Scholar] [CrossRef]
- Dunn, R.M.; Hawkins, J.M.B.; Blackwell, M.S.A.; Zhang, Y.; Collins, A.L. Impacts of Different Vegetation in Riparian Buffer Strips on Runoff and Sediment Loss. Hydrol. Process. 2022, 36, e14733. [Google Scholar] [CrossRef]
- Gericke, A.; Nguyen, H.H.; Fischer, P.; Kail, J.; Venohr, M. Deriving a Bayesian Network to Assess the Retention Efficacy of Riparian Buffer Zones. Water 2020, 12, 617. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.F.; Suriyagoda, L.D.B.; Lambers, H. Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes. Trends Plant Sci. 2020, 25, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Martin, N.F.; Matthews, J.W.; Arai, Y. Accumulation and Release of Organic Phosphorus (P) from Legacy P-Affected Soils to Adjacent Drainage Water. Environ. Sci. Pollut. Res. 2022, 29, 33885–33899. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.; Vianello, M.; Infantino, A.; Zanin, G.; Di Guardo, A. Effect of a Full-Grown Vegetative Filter Strip on Herbicide Runoff: Maintaining of Filter Capacity over Time. Chemosphere 2008, 71, 74–82. [Google Scholar] [CrossRef]
- Usharani, K.; Keerthi, K.V. Nitrate Bioremoval by Phytotechnology Using Utricularia Aurea Collected from Eutrophic Lake of Theerthamkara, Kerala, India. Pollution 2020, 6, 149–157. [Google Scholar] [CrossRef]
- Regni, L.; Bartucca, M.L.; Pannacci, E.; Tei, F.; Del Buono, D.; Proietti, P. Phytodepuration of Nitrate Contaminated Water Using Four Different Tree Species. Plants 2021, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Ribeiro, C.; Carvalho, F.; Durao, A.; Bugajski, P.; Kurek, K.; Pochwatka, P.; Jóźwiakowski, K. Phytoremediation Potential of Vetiveria zizanioides and Oryza sativa to Nitrate and Organic Substance Removal in Vertical Flow Constructed Wetland Systems. Ecol. Eng. 2019, 138, 19–27. [Google Scholar] [CrossRef]
- Popov, V.H.; Cornish, P.S.; Sun, H. Vegetated Biofilters: The Relative Importance of Infiltration and Adsorption in Reducing Loads of Water-Soluble Herbicides in Agricultural Runoff. Agric. Ecosyst. Environ. 2006, 114, 351–359. [Google Scholar] [CrossRef]
- Abu-Zreig, M.; Rudra, R.P.; Whiteley, H.R.; Lalonde, M.N.; Kaushik, N.K. Phosphorus Removal in Vegetated Filter Strips. J. Environ. Qual. 2003, 32, 613–619. [Google Scholar] [CrossRef]
Monitored Indices | Collected Rainwater | Standard Solutions | Measuring Method | Instrument Type |
---|---|---|---|---|
TSS | 4 | 149 | GB 11901-89 | |
TN | 1.4 | 4.44 | HJ 636-2012 | Shimadzu UV2550 spectrophotometer |
NH3-N | 0.38 | 0.40 | HJ 535-2009 | Shimadzu UV2550 spectrophotometer |
TP | 0.01 | 0.67 | GB/T 11893-1989 | Shimadzu UV2550 spectrophotometer |
COD | 6 | 74.2 | HJ/T 399-2007 | Hach DR2800 |
pH | Cation Exchange Capacity (cmol/kg) | Organic Carbon (%) | Particle Proportion | Clay Minerals | ||||
---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | Vermiculite (%) | Illite (%) | Kaolinite (%) | |||
7.0 | 11.8 | 0.95 | 10.0 | 64.6 | 25.4 | 6.0 | 74.0 | 20.0 |
Plant Species | Concentration (mg/L) | Rate (%) |
---|---|---|
Cynodon dactylon (Linn.) Pers | 62 | 64.6 |
Dichondra repens Forst | 75 | 57.2 |
Zoysia matrella | 93 | 46.9 |
Festuca elata Keng ex E. Alexeev | 107 | 39.0 |
Lolium perenne | 123 | 29.8 |
bare soil | 170 | 3.0 |
Plant Species | Concentration (mg/L) | Rate (%) |
---|---|---|
Cynodon dactylon (Linn.) Pers | 2.9 | 44.5 |
Dichondra repens Forst | 3.3 | 36.8 |
Zoysia matrella | 3.5 | 33.0 |
Festuca elata Keng ex E. Alexeev | 3.7 | 29.2 |
Lolium perenne | 4.0 | 23.4 |
bare soil | 4.85 | 7.2 |
Plant Species | Concentration (mg/L) | Rate (%) |
---|---|---|
Cynodon dactylon (Linn.) Pers | 0.34 | 27.8 |
Dichondra repens Forst | 0.30 | 36.3 |
Zoysia matrella | 0.32 | 32.0 |
Festuca elata Keng ex E. Alexeev | 0.32 | 32.0 |
Lolium perenne | 0.35 | 25.6 |
bare soil | 0.37 | 21.4 |
Plant Species | Concentration (mg/L) | Rate (%) |
---|---|---|
Cynodon dactylon (Linn.) Pers | 0.33 | 58.1 |
Dichondra repens Forst | 0.24 | 69.6 |
Zoysia matrella | 0.27 | 65.7 |
Festuca elata Keng ex E. Alexeev | 0.27 | 65.7 |
Lolium perenne | 0.50 | 36.6 |
bare soil | 0.63 | 20.1 |
Plant Species | Concentration (mg/L) | Rate (%) |
---|---|---|
Cynodon dactylon (Linn.) Pers | 63.0 | 27.6 |
Dichondra repens Forst | 65.0 | 25.3 |
Zoysia matrella | 66.0 | 24.2 |
Festuca elata Keng ex E. Alexeev | 65.0 | 25.3 |
Lolium perenne | 71.0 | 18.4 |
bare soil | 73.0 | 16.1 |
Plant Species | Rate of TSS (%) | Rate of TN (%) | Rate of NH3-N (%) | Rate of TP (%) | Rate of COD (%) | Synthesis Score |
---|---|---|---|---|---|---|
Cynodon dactylon (Linn.) Pers | 64.6 | 44.5 | 27.8 | 58.1 | 27.6 | 44.5 |
Dichondra repens Forst | 57.2 | 36.8 | 36.3 | 69.6 | 25.3 | 45.0 |
Zoysia matrella | 46.9 | 33.0 | 32.0 | 65.7 | 24.2 | 40.4 |
Festuca elata Keng ex E. Alexeev | 39.0 | 29.2 | 32.0 | 65.7 | 25.3 | 38.2 |
Lolium perenne | 29.8 | 23.4 | 25.6 | 36.6 | 18.4 | 26.8 |
bare soil | 3.0 | 7.2 | 21.4 | 20.1 | 16.1 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Gao, L.; Ma, C.; Wang, H.; Zhou, C. The Comprehensive Reduction Capacity of Five Riparian Vegetation Buffer Strips for Primary Pollutants in Surface Runoff. Appl. Sci. 2023, 13, 3898. https://doi.org/10.3390/app13063898
Hu Y, Gao L, Ma C, Wang H, Zhou C. The Comprehensive Reduction Capacity of Five Riparian Vegetation Buffer Strips for Primary Pollutants in Surface Runoff. Applied Sciences. 2023; 13(6):3898. https://doi.org/10.3390/app13063898
Chicago/Turabian StyleHu, Yanxin, Lin Gao, Chuanming Ma, Hao Wang, and Chi Zhou. 2023. "The Comprehensive Reduction Capacity of Five Riparian Vegetation Buffer Strips for Primary Pollutants in Surface Runoff" Applied Sciences 13, no. 6: 3898. https://doi.org/10.3390/app13063898
APA StyleHu, Y., Gao, L., Ma, C., Wang, H., & Zhou, C. (2023). The Comprehensive Reduction Capacity of Five Riparian Vegetation Buffer Strips for Primary Pollutants in Surface Runoff. Applied Sciences, 13(6), 3898. https://doi.org/10.3390/app13063898