Color Stability of Nanoparticles-Modified Dental Resin-Based Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Modification of RBCs with 3% and 7% of ZrO2, as well as 3% of TiO2 and SiO2, could improve its color stability;
- The chromatic effect on modified and unmodified RBCs varies between immersion solutions, in which the high range effect was reported with coffee, followed by tea and then Coca-Cola;
- Careful selection of both the type and concentration of reinforcing filler to achieve a balance between mechanical properties and aesthetic concerns of the restorative materials was recommended; and
- Thorough selection of restorative materials and techniques is essential in achieving the optimal aesthetic properties and minimizing discolorations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Description |
ADA | American Dental Association |
ANOVA | Analysis of variance |
°C | Centigrade |
CIE | Commission Internationale de l’Eclairage |
G | Gram |
H | Hour |
ISO | International Organization for Standardization |
Mm | Millimeter |
Min | Minute |
NPs | Nanoparticles |
NBS | National Bureau of Standards |
RBCs | Resin-based composites |
Rpm | Round per minute |
Sec | Second |
SiO2 | Silica dioxide |
SD | Standard deviation |
SPSS | Statistical Package for Social Sciences |
TiO2 | Titanium dioxide |
TMSPM | Trimethoxysilyl propyl methacrylate |
ZrO2 | Zirconium oxide |
References
- Chen, M.-H. Update on Dental Nanocomposites. J. Dent. Res. 2010, 89, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Al-Nabulsi, M.; Daud, A.; Yiu, C.; Omar, H.; Sauro, S.; Fawzy, A.; Daood, U. Co-Blend Application Mode of Bulk Fill Composite Resin. Materials 2019, 12, 2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dulaijan, Y.A.; Cheng, L.; Weir, M.D.; Melo, M.A.S.; Liu, H.; Oates, T.W.; Wang, L.; Xu, H.H.K. Novel Rechargeable Calcium Phosphate Nanocomposite with Antibacterial Activity to Suppress Biofilm Acids and Dental Caries. J. Dent. 2018, 72, 44–52. [Google Scholar] [CrossRef]
- Guler, A.U.; Yilmaz, F.; Kulunk, T.; Guler, E.; Kurt, S. Effects of Different Drinks on Stainability of Resin Composite Provisional Restorative Materials. J. Prosthet. Dent. 2005, 94, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color Stability of Resin-Based Composites: Staining Procedures with Liquids—A Narrative Review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef]
- Karanjkar, R.R.; Preshaw, P.M.; Ellis, J.S.; Holliday, R. Effect of Tobacco and Nicotine in Causing Staining of Dental Hard Tissues and Dental Materials: A Systematic Review and Meta-Analysis. Clin. Exp. Dent. Res. 2023, 9, 150–164. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Zidan, A.Z. Effect of Water Sorption and Solubility on Color Stability of Bulk-Fill Resin Composite. J. Contemp. Dent. Pract. 2018, 19, 1129–1134. [Google Scholar]
- Al Kheraif, A.A.A.; Qasim, S.S.B.; Ramakrishnaiah, R.; ur Rehman, I. Effect of Different Beverages on the Color Stability and Degree of Conversion of Nano and Microhybrid Composites. Dent. Mater. J. 2013, 32, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Barutcigil, Ç.; Yıldız, M. Intrinsic and Extrinsic Discoloration of Dimethacrylate and Silorane Based Composites. J. Dent. 2012, 40, e57–e63. [Google Scholar] [CrossRef]
- Park, J.-K.; Kim, T.-H.; Ko, C.-C.; Garcia-Godoy, F.; Kim, H.-I.; Kwon, Y.H. Effect of Staining Solutions on Discoloration of Resin Nanocomposites. Am. J. Dent. 2010, 23, 39. [Google Scholar]
- Poggio, C.; Ceci, M.; Beltrami, R.; Mirando, M.; Wassim, J.; Colombo, M. Color Stability of Esthetic Restorative Materials: A Spectrophotometric Analysis. Acta Biomater. Odontol. Scand. 2016, 2, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Azmy, E.; Al-Kholy, M.R.Z.; Fattouh, M.; Kenawi, L.M.M.; Helal, M.A. Impact of Nanoparticles Additions on the Strength of Dental Composite Resin. Int. J. Biomater. 2022, 2022, 1165431. [Google Scholar] [CrossRef]
- Bapat, R.A.; Joshi, C.P.; Bapat, P.; Chaubal, T.V.; Pandurangappa, R.; Jnanendrappa, N.; Gorain, B.; Khurana, S.; Kesharwani, P. The Use of Nanoparticles as Biomaterials in Dentistry. Drug Discov. Today 2019, 24, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Vagkopoulou, T.; Koutayas, S.O.; Koidis, P.; Strub, J.R. Zirconia in Dentistry: Part 1. Discovering the Nature of an Upcoming Bioceramic. Eur. J. Esthet. Dent. 2009, 4, 130–151. [Google Scholar] [PubMed]
- Karabela, M.M.; Sideridou, I.D. Synthesis and Study of Properties of Dental Resin Composites with Different Nanosilica Particles Size. Dent. Mater. 2011, 27, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, F.; Xie, H.; Gu, N. Nanoparticle-Reinforced Resin-Based Dental Composites. J. Dent. 2008, 36, 450–455. [Google Scholar] [CrossRef]
- Furman, B.; Rawls, H.R.; Wellinghoff, S.; Dixon, H.; Lankford, J.; Nicolella, D. Metal-Oxide Nanoparticles for the Reinforcement of Dental Restorative Resins. Crit. Rev. Biomed. Eng. 2000, 28, 439–443. [Google Scholar] [CrossRef]
- Al-Dulaijan, Y.A.; Balhaddad, A.A. Prospects on Tuning Bioactive and Antimicrobial Denture Base Resin Materials: A Narrative Review. Polymers 2023, 15, 54. [Google Scholar] [CrossRef]
- Azmy, E.; Al-Kholy, M.R.Z.; Al-Thobity, A.M.; Gad, M.M.; Helal, M.A. Comparative Effect of Incorporation of ZrO2, TiO2, and SiO2 Nanoparticles on the Strength and Surface Properties of PMMA Denture Base Material: An In Vitro Study. Int. J. Biomater. 2022, 2022, 5856545. [Google Scholar] [CrossRef]
- Azmy, E.; Al-Kholy, M.R.Z.; Gad, M.M.; Al-Thobity, A.M.; Emam, A.-N.M.; Helal, M.A. Influence of Different Beverages on the Color Stability of Nanocomposite Denture Base Materials. Int. J. Dent. 2021, 2021, 5861848. [Google Scholar] [CrossRef]
- Helal, M.A.; Yang, B.; Saad, E.; Abas, M.; Al-Kholy, M.R.; Imam, A.Y.; Gad, M.M. Effect of SiO2 and Al2O3 Nanoparticles on Wear Resistance of PMMA Acrylic Denture Teeth. Braz. Dent. Sci. 2020, 23, 12. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Zeng, F.; Xie, W.; Liu, Y.; Geng, L. Effect of Nano SiO2 Particles on the Morphology and Mechanical Properties of POSS Nanocomposite Dental Resins. J. Nanopart. Res. 2014, 16, 2736. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, M.; Li, Y.; Zhang, Q.; Wang, H. Mechanical Properties of Dental Resin Composites by Co-Filling Diatomite and Nanosized Silica Particles. Mater. Sci. Eng. C 2011, 31, 600–605. [Google Scholar] [CrossRef]
- Sahin, O.; Koroglu, A.; Dede, D.Ö.; Yilmaz, B. Effect of Surface Sealant Agents on the Surface Roughness and Color Stability of Denture Base Materials. J. Prosthet. Dent. 2016, 116, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Ahn, J.-S.; Lim, J.I.; Lee, Y.-K. Influence of TiO2 Nanoparticles on the Optical Properties of Resin Composites. Dent. Mater. 2009, 25, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, H.; Kanie, T.; Fujii, K.; Takahashi, H.; Ban, S. Effect of Filler Properties in Composite Resins on Light Transmittance Characteristics and Color. Dent. Mater. J. 2007, 26, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Peter, A.; Pietrobon, N.; Hämmerle, C. Visual and Spectrophotometric Shade Analysis of Human Teeth. J. Dent. Res. 2002, 81, 578–582. [Google Scholar] [CrossRef]
- Commission Internationale de l’ Éclairage—CIE, Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms, Bureau Central de la CIE, Paris, UK, 2004, Supplement no.2 of Publication CIE No. 15 (E-1.3.1).
- ISO 4049:2000; Dentistry-Polymer-Based Filling, Restorative and Luting Materials. ISO: Geneva, Switzerland, 2000; pp. 1–22.
- Gupta, R.; Bhatheja, A.; John, A.G.; Ramchandran, M.; Raina, A.A.; Behera, A.; Mittal, N. Effect of Beverages on Color Stability of Resin Composites: An in Vitro Study. J. Appl. Dent. Sci. 2019, 5, 92–95. [Google Scholar]
- Nguyen, T.-C.; Nguyen, T.-D.; Vu, D.-T.; Dinh, D.-P.; Nguyen, A.-H.; Ly, T.-N.-L.; Dao, P.-H.; Nguyen, T.-L.; Bach, L.-G.; Thai, H. Modification of Titanium Dioxide Nanoparticles with 3-(Trimethoxysilyl)Propyl Methacrylate Silane Coupling Agent. J. Chem. 2020, 2020, e1381407. [Google Scholar] [CrossRef]
- Hayichelaeh, C.; Reuvekamp, L.a.E.M.; Dierkes, W.K.; Blume, A.; Noordermeer, J.W.M.; Sahakaro, K. Enhancing the Silanization Reaction of the Silica-Silane System by Different Amines in Model and Practical Silica-Filled Natural Rubber Compounds. Polymers 2018, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Mahtabani, A.; Rytöluoto, I.; Saarimäki, E.; Lahti, K.; Paajanen, M.; Anyszka, R.; Dierkes, W.; Blume, A. Surface Modification of Fumed Silica by Dry Silanization for PP-Based Dielectric Nanocomposites. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 254–259. [Google Scholar]
- Aminoroaya, A.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Panahi, P.; Das, O.; Ramakrishna, S. A Review of Dental Composites: Methods of Characterizations. ACS Biomater. Sci. Eng. 2020, 6, 3713–3744. [Google Scholar] [CrossRef] [PubMed]
- Al-Dulaijan, Y.A.; Weir, M.D.; Melo, M.A.S.; Sun, J.; Oates, T.W.; Zhang, K.; Xu, H.H.K. Protein-Repellent Nanocomposite with Rechargeable Calcium and Phosphate for Long-Term Ion Release. Dent. Mater. 2018, 34, 1735–1747. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.D.; Park, S.E.; Weber, H.-P.; Ishikawa-Nagai, S. Clinical Performance of a Newly Developed Spectrophotometric System on Tooth Color Reproduction. J. Prosthet. Dent. 2008, 99, 361–368. [Google Scholar] [CrossRef]
- Ertas, E.; Güler, A.U.; Yücel, A.Ç.; Köprülü, H.; Güler, E. Color Stability of Resin Composites after Immersion in Different Drinks. Dent. Mater. J. 2006, 25, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda-Navarro, W.F.; Arana-Correa, B.E.; Ferreira Borges, C.P.; Habib Jorge, J.; Urban, V.M.; Campanha, N.H. Color Stability of Resins and Nylon as Denture Base Material in Beverages. J. Prosthodont. Implant Esthet. Reconstr. Dent. 2011, 20, 632–638. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Lim, B.-S.; Rhee, S.-H.; Yang, H.-C.; Powers, J.M. Changes of Optical Properties of Dental Nano-Filled Resin Composites after Curing and Thermocycling. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2004, 71, 16–21. [Google Scholar] [CrossRef]
- Tuncdemir, A.R.; Aykent, F. Effects of Fibers on the Color Change and Stability of Resin Composites after Accelerated Aging. Dent. Mater. J. 2012, 31, 872–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helal, M.A.; Baraka, O.A.; Sanad, M.E.; Ludwig, K.; Kern, M. Effects of Long-Term Simulated RPD Clasp Attachment/Detachment on Retention Loss and Wear for Two Clasp Types and Three Abutment Material Surfaces. J. Prosthodont. Implant Esthet. Reconstr. Dent. 2012, 21, 370–377. [Google Scholar] [CrossRef]
- Helal, M.A.; Al-Gazzar, A.E.; Abas, M.; Akhtar, S.; Gad, M.M.; Al-Thobity, A.M. Comparative Effect of Different Surface Treatments on the Shear Bond Strength of Two Types of Artificial Teeth Bonded to Two Types of Denture Base Resins. J. Prosthodont. 2022, 31, 427–433. [Google Scholar] [CrossRef]
- Imamura, S.; Takahashi, H.; Hayakawa, I.; Loyaga-Rendon, P.G.; Minakuchi, S. Effect of Filler Type and Polishing on the Discoloration of Composite Resin Artificial Teeth. Dent. Mater. J. 2008, 27, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.A.; Scherrer, S.S.; Ferracane, J.L.; Bona, Á.D. Microstructural Characterization and Fracture Behavior of a Microhybrid and a Nanofill Composite. Dent. Mater. 2008, 24, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Laino, L.; De Stefano, R.; D’Amico, C.; Bocchieri, S.; Amoroso, G.; Isola, G.; Cervino, G. Dental Whitening Gels: Strengths and Weaknesses of an Increasingly Used Method. Gels 2019, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Bahbishi, N.; Mzain, W.; Badeeb, B.; Nassar, H.M. Color Stability and Micro-Hardness of Bulk-Fill Composite Materials after Exposure to Common Beverages. Materials 2020, 13, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdemir, U.; Yıldız, E.; Eren, M.M. Effects of Sports Drinks on Color Stability of Nanofilled and Microhybrid Composites after Long-Term Immersion. J. Dent. 2012, 40, e55–e63. [Google Scholar] [CrossRef] [PubMed]
- Mundim, F.M.; Garcia, L.d.F.R.; Pires-de-Souza, F.d.C.P. Effect of Staining Solutions and Repolishing on Color Stability of Direct Composites. J. Appl. Oral Sci. 2010, 18, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, M.G.F.P.; Volpato, C.A.M.; Henriques, B.A.P.C.; Vaz, P.C.S.; Silva, F.S.; Silva, C.F.C.L. Color Stability of a Bis-Acryl Composite Resin Subjected to Polishing, Thermocycling, Intercalated Baths, and Immersion in Different Beverages. J. Esthet. Restor. Dent. 2018, 30, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Tekçe, N.; Tuncer, S.; Demirci, M.; Serim, M.E.; Baydemir, C. The Effect of Different Drinks on the Color Stability of Different Restorative Materials after One Month. Restor. Dent. Endod. 2015, 40, 255–261. [Google Scholar] [CrossRef]
- Karaman, E.; Tuncer, D.; Firat, E.; Ozdemir, O.S.; Karahan, S. Influence of Different Staining Beverages on Color Stability, Surface Roughness and Microhardness of Silorane and Methacrylate-Based Composite Resins. J. Contemp. Dent. Pract. 2014, 15, 319–325. [Google Scholar] [CrossRef]
- Al-kheraif, A.A. Effects of Curing Units and Staining Solutions on the Color Susceptibility of a Microhybrid Composite Resin. J. Dent. Sci. 2011, 6, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Villalta, P.; Lu, H.; Okte, Z.; Garcia-Godoy, F.; Powers, J.M. Effects of Staining and Bleaching on Color Change of Dental Composite Resins. J. Prosthet. Dent. 2006, 95, 137–142. [Google Scholar] [CrossRef]
- Ghiorghe, C.; Iovan, G.; Topoliceanu, C.; Sandu, A.V.; Andrian, S. Comparative Study Regarding the Colorimetric Changes of Two Composite Resins after Immersion in Several Beverages and One Antibacterial Mouthwash. Rev. De Chim. Buchar. Orig. Ed. 2013, 64, 1436. [Google Scholar]
- Ie, R. Analysis and Characterization of Dental Polymers. Crit. Rev. Biocompat. 1988, 4, 247–279. [Google Scholar]
- Mitra, S.B.; Wu, D.; Holmes, B.N. An Application of Nanotechnology in Advanced Dental Materials. J. Am. Dent. Assoc. 2003, 134, 1382–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N. Effect of Nanofiller Technology on Surface Properties of Nanofilled and Nanohybrid Composites. Int. J. Dent. Oral Health 2015, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nasim, I.; Neelakantan, P.; Sujeer, R.; Subbarao, C.V. Color Stability of Microfilled, Microhybrid and Nanocomposite Resins—An in Vitro Study. J. Dent. 2010, 38, e137–e142. [Google Scholar] [CrossRef]
- Keller, J.C.; Lautenschalger, E.P. Porosity Reduction and Its Associated Effect on the Diametral Tensile Strength of Activated Acrylic Resins. J. Prosthet. Dent. 1985, 53, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Ge, S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules 2019, 24, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoor, A.; Khurshid, Z.; Khan, M.T.; Mansoor, E.; Butt, F.A.; Jamal, A.; Palma, P.J. Medical and Dental Applications of Titania Nanoparticles: An Overview. Nanomaterials 2022, 12, 3670. [Google Scholar] [CrossRef]
- Raj, V.; Bhat, V.; John, N.; Shetty, A.; Joseph, S.; Kuriakose, R.; Hameed, S. Assessment of Flexural Strength and Cytotoxicity of Heat Cure Denture Base Resin Modified with Titanium Dioxide Nanoparticles: An in Vitro Study. J. Contemp. Dent. Pract. 2021, 22, 1025–1029. [Google Scholar] [PubMed]
- Aati, S.; Shrestha, B.; Fawzy, A. Cytotoxicity and Antimicrobial Efficiency of ZrO2 Nanoparticles Reinforced 3D Printed Resins. Dent. Mater. 2022, 38, 1432–1442. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H. Towards the Development of Self-Healing and Antibacterial Dental Nanocomposites via Incorporation of Novel Acrylic Microcapsules. Dent. Mater. 2022, 38, 858–873. [Google Scholar] [CrossRef] [PubMed]
Brand Name/Manufacturer | Company Name | Specifications |
---|---|---|
Nexcomp | META BIOMED, Cheongju-si, Republic of Korea | Resin: Bis-GMA, Bis-EMA, UDMA, TEGDMA. Fillers: 0.04–0.7 µm barium aluminum boro-silicate. Light cured, A2 |
ZrO2 nanoparticles | NanoGATE, 6 October, Giza, Egypt | Spherical, white, and tetragonal nanoparticles (12 ± 3 nm; purity > 99%) |
TiO2 nanoparticles | Spherical, white, and anatase nanoparticles (15 ± 3 nm; purity > 99%) | |
SiO2 nanoparticles | Spherical, white, and amorphous nanoparticles (21 ± 3 nm; purity > 99%) | |
Silane-coupling-agent | Sigma/Aldrich Chemie GmbH, Taufkirchen, Germany | 3-trimethoxysilyl propyl methacrylate (TMSPM). Purity 98%, ethanol 99.7%., lot No. 440159 |
Beverage Solution | Company Name | Preparation of Beverage Solution | Soaking Time | Temperature | pH |
---|---|---|---|---|---|
Coffee | Abu Auf, New Cairo, Egypt | 200 mL distilled water boiled for 2 min then used to made 2 g of coffee, the mix then was filtered before usage. | 6 days | 37 °C | 5.0 |
Tea | Lipton, London, UK | 200 mL distilled water boiled for 2 min then used to made 2 g of tea, the mix then was filtered before usage. | 6.1 | ||
Cola-Cola | Coca-Cola Co., Atlanta, GA, USA | Ready made | 2.7 | ||
Water | Dasani, Atlanta, GA, USA | Ready made | 7.1 |
Group | Coffee | Tea | Coca-Cola | Mineral Water | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | NBS | Mean ± SD | NBS | Mean ± SD | NBS | Mean ± SD | NBS | |
N0 | 4.46 ± 0.07 A | 4.1 | 3.42 ± 0.05 A | 3.1 | 2.49 ± 0.04 A | 2.3 | 1.12 ± 0.02 A | 1 |
Zr3 | 4.31 ± 0.03 BC | 3.96 | 3.23 ± 0.10 D | 3 | 2.24 ± 0.04 D | 2.1 | 0.99 ± 0.05 D | 0.9 |
Zr7 | 4.36 ± 0.05 B | 4 | 3.28 ± 0.09 CD | 3 | 2.29 ± 0.11 CD | 2.1 | 1.0 ± 0.03 CD | 0.9 |
Ti3 | 4.39 ± 0.04 AB | 4 | 3.3 ± 0.06 BCD | 3 | 2.34 ± 0.08 BC | 2.2 | 1.02 ± 0.05 CD | 0.9 |
Ti7 | 4.42 ± 0.07 AB | 4.1 | 3.35 ± 0.09 ABC | 3.1 | 2.41 ± 0.06 AB | 2.2 | 1.09 ± 0.02 AB | 1 |
Si3 | 4.4 ± 0.04 A | 4 | 3.32 ± 0.05 BCD | 3.1 | 2.37 ± 0.03 BC | 2.2 | 1.05 ± 0.04 BC | 1 |
Si7 | 4.44 ± 0.06 A | 4.1 | 3.39 ± 0.04 AB | 3.1 | 2.46 ± 0.05 A | 2.3 | 1.08 ± 0.06 AB | 1 |
p-value | <0.001 * | <0.001 * | <0.001 * | <0.001 * | ||||
Effect size | 0.461 | 0.457 | 0.650 | 0.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dulaijan, Y.A.; AlGhamdi, M.A.; Azmy, E.; Al-Kholy, M.R.Z.; Almulhim, K.S.; Helal, M.A. Color Stability of Nanoparticles-Modified Dental Resin-Based Composites. Appl. Sci. 2023, 13, 3870. https://doi.org/10.3390/app13063870
Al-Dulaijan YA, AlGhamdi MA, Azmy E, Al-Kholy MRZ, Almulhim KS, Helal MA. Color Stability of Nanoparticles-Modified Dental Resin-Based Composites. Applied Sciences. 2023; 13(6):3870. https://doi.org/10.3390/app13063870
Chicago/Turabian StyleAl-Dulaijan, Yousif A., Maram A. AlGhamdi, Emad Azmy, Mohamed Reda Zaki Al-Kholy, Khalid S. Almulhim, and Mohamed A. Helal. 2023. "Color Stability of Nanoparticles-Modified Dental Resin-Based Composites" Applied Sciences 13, no. 6: 3870. https://doi.org/10.3390/app13063870
APA StyleAl-Dulaijan, Y. A., AlGhamdi, M. A., Azmy, E., Al-Kholy, M. R. Z., Almulhim, K. S., & Helal, M. A. (2023). Color Stability of Nanoparticles-Modified Dental Resin-Based Composites. Applied Sciences, 13(6), 3870. https://doi.org/10.3390/app13063870