Commercial Ebullated Bed Vacuum Residue Hydrocracking Performance Improvement during Processing Difficult Feeds
Abstract
:1. Introduction
2. Materials and Methods
- HOilFeed540°C+ = mass flow rate of the H-Oil feed fraction boiling above 540 °C determined by the high temperature simulated distillation method ASTM D 7169 of the feed and multiplied by the mass flow rate of the feed in t/h;
- HOilProduct540°C+ = mass flow rate of the H-Oil product fraction boiling above 540 °C determined by high temperature simulated distillation. method ASTM D 7169 of the liquid product multiplied by the flow rate of the liquid product in t/h.
- HOilFeedasp = asphaltene fraction content in the vacuum residual oil feed % multiplied by the feed rate in t/h;
- HOilProductasp = asphaltene fraction content in the hydrocracked vacuum residual oil (H-Oil VTB) product % multiplied by the H-Oil VTB flow rate in t/h.
- HDM = hydrodemetallization extent, %;
- HOilFeed(V + Ni) = content of vanadium and nickel in the feed, ppm;
- HOilProduct(V + Ni) = content of vanadium and nickel in the liquid product, ppm.
3. Results
4. Discussion
- Conversion = net vacuum residue conversion, wt.%;
- HDM = HDM extent, %;
- ΔT(R1) = the first reactor ΔT, °C.
- LHSV = liquid hourly space velocity, h−1;
- WABT = weight average bed temperature, °C.
5. Conclusions
- HDM extent enhancement
- First reactor ΔT increase
- Higher metal removal from the first reactor
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Aro | Aromatics |
ATB | Ebullated bed vacuum residue hydrocracker atmospheric tower bottom product |
ATB TSE | Total sediment existent (sediment content) in ATB, wt.% |
CH2Cl2 | Fraction of asphaltenes soluble in dichloromethane (SAR-ADTM method) |
C5-asp | n-pentane asphaltenes |
C7-asp | n-heptane asphaltenes |
CII | Colloidal instability index |
CII (C5asp) | Colloidal instability index determined on the base of C5 asphaltene content |
CII (C7asp) | Colloidal instability index determined on the base of C7 asphaltene content |
Conv. | Vacuum residue net (540 °C+) conversion |
CyC6 | Fraction of asphaltenes soluble in cyclohexane (SAR-ADTM method) |
DT1─DT4 | Differences between temperature of ATB product and the different ATB skin thermocouples |
ΔT | Diference between outlet and inlet temperature of the ebullated bed reactors |
HDAs | Hydrodeasphaltizatition |
HDAs(C5) | Hydrodeasphaltizatition of C5-asphaltenes |
HDAs(C7) | Hydrodeasphaltizatition of C7-asphaltenes |
HDM | Hydrodemetallization |
HDS | Hydrodesulphurization |
Kin. vis. | Kinematic viscosity |
R-1 ΔT | Fisrt reactor ΔT |
R-2 ΔT | Second reactor ΔT |
Res | Resins |
Sat | Saturates |
Toluene | Fraction of asphaltenes soluble in toluene (SAR-ADTM method) |
Total Asp | Total asphaltene content in residues (SAR-ADTM method) |
T-R1 | Weight average bed temperature in the first H-Oil ebullated bed reactor |
T-R2 | Weight average bed temperature in the second H-Oil ebullated bed reactor |
VTB | Ebullated bed vacuum residue hydrocracker vacuum tower bottom product |
VR | Vacuum residue |
References
- Bellussi, G.; Rispoli, G.; Landoni, A.; Millini, R.; Molinari, D.; Montanari, E.; Moscotti, D.; Pollesel, P. Hydroconversion of heavy residues in slurry reactors: Developments and perspective. J. Catal. 2013, 308, 189–200. [Google Scholar] [CrossRef]
- Stratiev, D.; Nenov, S.; Shishkova, I.; Georgiev, B.; Argirov, G.; Dinkov, R.; Yordanov, D.; Atanassova, V.; Vassilev, P.; Atanassov, K. Commercial investigation of the ebullated-bed vacuum residue hydrocracking in the conversion range of 55–93%. ACS Omega 2020, 5, 33290–33304. [Google Scholar] [CrossRef] [PubMed]
- Frecon, J.; Le-Bars, D.; Rault, J. Flexible upgrading of heavy feedstocks. PTQ 2019, Q1, 1–11. Available online: https://www.digitalrefining.com/article/1002259 (accessed on 20 February 2023).
- Panariti, N.; Rispoli, G. The first EST Commercial Unit: Achieving the goal of residue conversion. In Proceedings of the 13th International Bottom of the Barrel Conference, Istanbul, Turkey, 13–14 May 2015. [Google Scholar]
- Mukherjee, U.; Gillis, D. Advances in residue hydrocracking. PTQ 2018, Q1, 1–12. [Google Scholar]
- Alonso, F.; Ancheyta, J.; Centeno, G.; Marroquín, G.; Rayo, P.; Silva-Rodrigo, R. Effect of Reactor Configuration on the Hydrotreating of Atmospheric Residue. Energy Fuels 2019, 33, 1649–1658. [Google Scholar] [CrossRef]
- Stratiev, D.S.; Shishkova, I.K.; Nikolaychuk, E.; Anastasov, M.; Stanulov, K.; Toteva, V. Effect of catalyst condition on sedimentation and conversion in the ebullated bed vacuum residue H-Oil hydrocracking. Pet. Sci. Technol. 2019, 37, 1463–1470. [Google Scholar] [CrossRef]
- Respini, M.; Ekres, S.; Wright, B.; Žajdlík, R. Strategies to control sediment and coke in a hydrocracker. PTQ 2013, Q2. Available online: https://www.digitalrefining.com/article/1000794 (accessed on 20 February 2023).
- Kunnas, J.; Ovaskainen, O.; Respini, M. Mitigate fouling in ebullated-bed hydrocrackers. Hydrocarb. Process. 2010, 10, 59–64. [Google Scholar]
- Sayles, S.; Ohmes, R.; Manner, R. Seven rules of sedimentation in hydrocracking. PTQ 2015, Q2, 1–7. [Google Scholar]
- Stratiev, D.; Dinkov, R.; Shishkova, I.; Sharafutdinov, I.; Ivanova, N.; Mitkova, M.; Yordanov, D.; Rudnev, N.; Stanulov, K.; Artemiev, A.; et al. What is behind the high values of hot filtration test of the ebullated bed residue H-Oil hydrocracker residual oils? Energy Fuels 2016, 30, 7037–7054. [Google Scholar] [CrossRef]
- Stratiev, D.S.; Shishkova, I.K.; Dinkov, R.K.; Petrov, I.P.; Kolev, I.V.; Yordanov, D.; Sotirov, S.; Sotirova, E.N.; Atanassova, V.K.; Ribagin, S.; et al. FCC slurry oil, Recycle, and operating conditions effects on H-Oil product quality. Processes 2021, 9, 952. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Dinkov, R.; Atanassova, V.; Ribagin, S.; Stratiev, D.D.; Atanassov, K. Evaluation of crude slate and processing of recycle effects on H-Oil performance. Int. J. Oil Gas Coal Technol. 2022, 30, 130–156. [Google Scholar] [CrossRef]
- Manek, E.; Haydary, J. Hydrocracking of vacuum residue with solid and dispersed phase catalyst: Modeling of sediment formation and hydrodesulfurization. Fuel Process. Technol. 2017, 159, 320–327. [Google Scholar] [CrossRef]
- Sundaram, K.M.; Mukherjee, U.; Baldassari, M. Thermodynamic model of sediment deposition in the LC-FINING process. Energy Fuels 2008, 2, 3226–3236. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Dinkov, R.; Kolev, I.; Argirov, G.; Ivanov, V.; Ribagin, S.; Atanassova, V.; Atanassov, K.; Stratiev, D.; et al. Intercriteria analysis to diagnose the reasons for increased fouling in a commercial ebullated bed vacuum residue hydrocracker. ACS Omega 2022, 7, 30462–30476. [Google Scholar] [CrossRef] [PubMed]
- Stratiev, D.; Shishkova, I.; Nikolaychuk, E.; Ijlstra, W.; Holmes, B.; Caillot, M. Feed properties effect on the performance of vacuum residue ebullated bed H-Oil hydrocracking. Oil Gas Eur. Mag. 2019, 45, 194–200. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Argirov, G.; Yankov, V.; Mountainland, D.; Silverman, B.; Toteva, V. Improving H-Oil ebullated bed vacuum residue hydrocracking performance by the use of molecularly dispersed HCAT® catalyst. Pet. Coal 2021, 63, 655–667. [Google Scholar]
- Available online: https://www.sciencedirect.com/search?qs=residue%20hydrocracking (accessed on 20 January 2023).
- Gragnani, A.; Putek, S. Resid hydrocracker produces low-sulfur diesel from difficult feeds. Hydrocarb. Process. 2006, 85, 95–100. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Dinkov, R.; Nikolova, R.; Mitkova, M.; Stanulov, K.; Sharpe, R.; Russell, C.A.; Obryvalina, A.; Telyashev, R. Reactivity and stability of vacuum residual oils in their thermal conversion. Fuel 2014, 123, 133–142. [Google Scholar] [CrossRef]
- Atanassov, K.; Mavrov, D.; Atanassova, V. Intercriteria decision making: A new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuit. Fuzzy Sets Gen. Nets 2014, 11, 1–8. [Google Scholar]
- Atanassov, K.; Atanassova, V.; Gluhchev, G. Intercriteria analysis: Ideas and problems. Notes Intuit. Fuzzy Sets 2015, 21, 81–88. [Google Scholar]
- Atanassov, K. Index Matrices: Towards an Augmented Matrix Calculus; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Mavrov, D. Software for InterCriteria Analysis: Implementation of the Main Algorithm. Notes Intuit. Fuzzy Sets 2015, 21, 77–86. [Google Scholar]
- Stratiev, D.; Nedelchev, A.; Shishkova, I.; Ivanov, A.; Sharafutdinov, I.; Nikolova, R.; Mitkova, M.; Yordanov, D.; Rudnev, N.; Belchev, Z.; et al. Dependence of visbroken residue viscosity and vacuum residue conversion in a commercial visbreaker unit on feedstock quality. Fuel Process. Technol. 2015, 138, 595–604. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Nedelchev, A.; Kirilov, K.; Nikolaychuk, E.; Ivanov, A.; Sharafutdinov, I.; Veli, A.; Mitkova, M.; Tsaneva, T.; et al. Investigation of relationships between petroleum properties and their impact on crude oil compatibility. Energy Fuels 2015, 29, 7836–7854. [Google Scholar] [CrossRef]
- Stratiev, D.S.; Sotirov, S.; Shishkova, I.; Nedelchev, A.; Sharafutdinov, I.; Vely, A.; Mitkova, M.; Yordanov, D.; Sotirova, E.; Atanassova, V.; et al. Investigation of relationships between bulk properties and fraction properties of crude oils by application of the Intercriteria analysis. Petrol. Sci. Technol. 2016, 34, 1113–1120. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Nikolova, R.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation on precision of determination of SARA analysis of vacuum residual oils from different origin. Pet. Coal 2016, 58, 109–119. [Google Scholar]
- Adams, J.J.; Rovani, J.F.; Planche, J.-P.; Stratiev, D.; Shishkova, I.; Kolev, I.; Atanassov, K.; Nenov, S.; Ribagin, S.; Stratiev, D.; et al. SAR-AD Method to Characterize Vacuum Residues from Different Origins as a Tool to Investigate the Performance of a Commercial Ebullated Bed Vacuum Residue Hydrocracker. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4252478 (accessed on 1 December 2022).
- Wu, Z.; Huiqing, L.; Wang, X.; Zhang, Z. Emulsification and improved oil recovery with viscosity reducer during steam injection process for heavy oil. J. Ind. Eng. Chem. 2018, 61, 348–355. [Google Scholar] [CrossRef]
- Wu, Z.; Huiqing, L.; Pang, Z.; Wu, C.; Gao, M. Pore-scale experiment on blocking characteristics and EOR mechanisms of nitrogen foam for heavy oil: A 2D visualized study. Energy Fuels 2016, 30, 9106–9113. [Google Scholar] [CrossRef]
- Mountainland, D.; Argirov, G.; Stratiev, D.; Shishkova, I. Lukoil Neftohim Burgas AD (LNB) Enhancing EB Flexibility with HCAT Technology. In Proceedings of the International Downstream Week (IDW), Dubrovnik, Croatia, 30 September 2022; pp. 1–22. [Google Scholar]
- Hong, E.; Watkinson, P. Precipitation and fouling in heavy oil–diluent blends. Heat Transf. Eng. 2009, 30, 786–793. [Google Scholar]
- Robert, E.C.; Merdrignac, I.; Rebours, B.; Harlé, V.; Kressmann, S.; Colyar, J. Contribution of analytical tools for the understanding of sediment formation: Application to H-Oil® process. Pet. Sci. Technol. 2003, 21, 615–627. [Google Scholar] [CrossRef]
- Watkinson, P. Deposition from crude oils in heat exchangers. Heat Transf. Eng. 2007, 28, 177–184. [Google Scholar] [CrossRef]
- Rogel, E.; Ovalles, C.; Pradhan, A.; Leung, P.; Chen, N. Sediment formation in residue hydroconversion processes and its correlation to asphaltene behavior. Energy Fuels 2013, 27, 6587–6593. [Google Scholar] [CrossRef]
- Reynolds, J.G. Characterization of heavy residua by application of a modified D2007 separation and electron paramagnetic resonance. Liquid Fuels Technol. 1985, 3, 73–105. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, C.; Shi, Q. Porphyrins in Heavy Petroleums: A Review; Structure and Bonding; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions. Fuel 2016, 170, 115–129. [Google Scholar] [CrossRef]
- Zheng, F. Molecular Composition and Structure of Metal Compounds in Asphaltene. Ph.D. Thesis, Université de Pau et des Pays de l’Adour, Pau, France, China University of Petroleum, Beijing, China, 2020. [Google Scholar]
- Zheng, F.; Zhang, Y.; Zhang, Y.; Han, Y.; Zhang, L.; Bouyssiere, B.; Shi, Q. Aggregation of petroporphyrins and fragmentation of porphyrin ions: Characterized by TIMS-TOF MS and FT-ICR MS. Fuel 2021, 289, 119889. [Google Scholar] [CrossRef]
- Ancheyta, J.; Centeno, G.; Trejo, F.; Marroquín, G. Changes in asphaltene properties during hydrotreating of heavy crudes. Energy Fuel 2003, 17, 1233–1238. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Nguyen, Q.-A.; Cao, A.N.T.; Ernest, T.; Nguyen, T.B.; Pham, P.T.; Nguyen, T.M. Hydrodemetallization of heavy oil: Recent progress, challenge, and future prospects. J. Pet. Eng. 2022, 216, 110762. [Google Scholar] [CrossRef]
- Takahashi, T.; Higashi, H.; Kai, T. Development of a new hydrodemetallization catalyst for deep desulfurization of atmospheric residue and the effect of reaction temperature on catalyst deactivation. Catal. Today 2005, 104, 76–85. [Google Scholar] [CrossRef]
Urals | Basrah Heavy | Siberian Light | VTB Recycle | ||
---|---|---|---|---|---|
VR density at 15 C | 0.997 | 1.071 | 0.993 | 1.0359 | |
VR Concarbon | wt.% | 17.5 | 28.9 | 14 | 23.5 |
VR sulphur | wt.% | 3.0 | 7.1 | 1.58 | 1.15 |
Sat (ref. [29]) | wt.% | 25.6 | 12.3 | 25 | 23.5 |
Aro (ref. [29]) | wt.% | 52.5 | 54.1 | 61.1 | 50.8 |
Res (ref. [29]) | wt.% | 7.8 | 5.8 | 6.1 | 7.7 |
C7-asp (ref. [29]) | wt.% | 14.1 | 27.7 | 7.8 | 18.0 |
C5-asp (ref. [29]) | wt.% | 17.6 | 37 | 15.5 | 25.7 |
Kin. vis. * | mm2/s | 220.9 | 731.9 | 149.1 | 114 |
Soft. point,°C | wt.% | 40.1 | 68.6 | 28.9 | 38.9 |
Sat (SAR-ADTM; ref. [30]) | wt.% | 18.2 | 7.4 | 21.2 | 21.5 |
Aro 1 (SAR-ADTM; ref. [30]) | wt.% | 7.0 | 6.5 | 9.4 | 8.4 |
Aro 2 (SAR-ADTM; ref. [30]) | wt.% | 20.7 | 23.9 | 19.4 | 20.3 |
Aro 3 (SAR-ADTM; ref. [30]) | wt.% | 33.0 | 38.9 | 32.2 | 39.7 |
Resins (SAR-ADTM; ref. [30]) | wt.% | 14.0 | 13.4 | 13.4 | 4.2 |
CyC6 (SAR-ADTM; ref. [30]) | wt.% | 2.4 | 3.0 | 1.3 | 0.14 |
Toluene (SAR-ADTM; ref. [30]) | wt.% | 4.4 | 6.6 | 2.9 | 5.28 |
CH2Cl2 ((SAR-ADTM; ref. [30]) | wt.% | 0.1 | 0.3 | 0.1 | 0.53 |
Total Asp (SAR-ADTM; ref. [30]) | wt.% | 6.9 | 9.9 | 4.4 | 5.95 |
Vanadium content | ppm | 255 | 187 | 116 | 45 |
Nickel | ppm | 79 | 48 | 46 | 28 |
Period of Time | Between 17 May 2022 and 15 August 2022 | Between 15 October 2022 and 28 November 2022 | ||
---|---|---|---|---|
Performance indicators | 17 May 2022 | 15 August 2022 | 15 October 2022 | 27 November 2022 |
Net conversion, wt.% | 67.0 | 76.1 | 79.2 | 82.7 |
WABT, °C | 418.5 | 429.5 | 430 | 431 |
LHSV, h−1 | 0.18 | 0.19 | 0.18 | 0.17 |
ATB, sediment content, wt.% | 0.35 | 0.30 | 0.24 | 0.12 |
Fouling rate | Unacceptably high | acceptable | acceptable | acceptable |
HDM, % | 58.2 | 85.7 | 87.7 | 97.9 |
ΔT R-1001 | 58 | 77 | 86 | 84 |
Saturates in hydrocracked vacuum residue, wt.% | 22.4 | 20.8 | 19.4 | 17.4 |
C7-asphaltenes in hydrocracked vacuum residue, wt.% | 16.0 | 17.0 | 18.4 | 22.7 |
C5-asphaltenes in hydrocracked vacuum residue, wt.% | 18.3 | 22.0 | 23.8 | 31.9 |
μ | Conv. | HDM | T-R1 | T-R2 | ATB TSE | PBFO, TSP | R-1 ΔT | R-2 ΔT | Urals | Sib Light | Basrah Heavy |
---|---|---|---|---|---|---|---|---|---|---|---|
Conv. | 1.00 | 0.84 | 0.82 | 0.81 | 0.28 | 0.33 | 0.83 | 0.39 | 0.61 | 0.35 | 0.23 |
HDM | 0.84 | 1.00 | 0.71 | 0.69 | 0.30 | 0.33 | 0.75 | 0.38 | 0.56 | 0.44 | 0.17 |
T-R1 | 0.82 | 0.71 | 1.00 | 0.91 | 0.23 | 0.28 | 0.81 | 0.33 | 0.55 | 0.28 | 0.30 |
T-R2 | 0.81 | 0.69 | 0.91 | 1.00 | 0.24 | 0.28 | 0.78 | 0.39 | 0.57 | 0.28 | 0.28 |
ATB TSE | 0.28 | 0.30 | 0.23 | 0.24 | 1.00 | 0.60 | 0.20 | 0.52 | 0.36 | 0.56 | 0.30 |
PBFO, TSP | 0.33 | 0.33 | 0.28 | 0.28 | 0.60 | 1.00 | 0.34 | 0.36 | 0.30 | 0.64 | 0.19 |
R-1 ΔT | 0.83 | 0.75 | 0.81 | 0.78 | 0.20 | 0.34 | 1.00 | 0.39 | 0.65 | 0.26 | 0.27 |
R-2 ΔT | 0.39 | 0.38 | 0.33 | 0.39 | 0.52 | 0.36 | 0.39 | 1.00 | 0.57 | 0.33 | 0.31 |
Urals | 0.61 | 0.56 | 0.55 | 0.57 | 0.36 | 0.30 | 0.65 | 0.57 | 1.00 | 0.14 | 0.35 |
Sib Light | 0.35 | 0.44 | 0.28 | 0.28 | 0.56 | 0.64 | 0.26 | 0.33 | 0.14 | 1.00 | 0.14 |
Basrah Heavy | 0.23 | 0.17 | 0.30 | 0.28 | 0.30 | 0.19 | 0.27 | 0.31 | 0.35 | 0.14 | 1.00 |
Nu | Conv. | HDM | T-R1 | T-R2 | ATB TSE | PBFO, TSP | R-1 ΔT | R-2 ΔT | Urals | Sib Light | Basrah Heavy |
---|---|---|---|---|---|---|---|---|---|---|---|
Conv. | 0.00 | 0.16 | 0.06 | 0.09 | 0.70 | 0.65 | 0.15 | 0.54 | 0.34 | 0.60 | 0.26 |
HDM | 0.16 | 0.00 | 0.18 | 0.21 | 0.68 | 0.65 | 0.23 | 0.55 | 0.39 | 0.51 | 0.32 |
T-R1 | 0.06 | 0.18 | 0.00 | 0.05 | 0.64 | 0.60 | 0.07 | 0.54 | 0.29 | 0.57 | 0.19 |
T-R2 | 0.09 | 0.21 | 0.05 | 0.00 | 0.64 | 0.61 | 0.12 | 0.50 | 0.29 | 0.58 | 0.20 |
ATB TSE | 0.70 | 0.68 | 0.64 | 0.64 | 0.00 | 0.37 | 0.75 | 0.40 | 0.57 | 0.38 | 0.20 |
PBFO, TSP | 0.65 | 0.65 | 0.60 | 0.61 | 0.37 | 0.00 | 0.61 | 0.55 | 0.64 | 0.29 | 0.30 |
R-1 ΔT | 0.15 | 0.23 | 0.07 | 0.12 | 0.75 | 0.61 | 0.00 | 0.54 | 0.28 | 0.67 | 0.24 |
R-2 ΔT | 0.54 | 0.55 | 0.54 | 0.50 | 0.40 | 0.55 | 0.54 | 0.00 | 0.32 | 0.56 | 0.20 |
Urals | 0.34 | 0.39 | 0.29 | 0.29 | 0.57 | 0.64 | 0.28 | 0.32 | 0.00 | 0.86 | 0.18 |
Sib Light | 0.60 | 0.51 | 0.57 | 0.58 | 0.38 | 0.29 | 0.67 | 0.56 | 0.86 | 0.00 | 0.39 |
Basrah Heavy | 0.26 | 0.32 | 0.19 | 0.20 | 0.20 | 0.30 | 0.24 | 0.20 | 0.18 | 0.39 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiev, B.E.; Stratiev, D.S.; Argirov, G.S.; Nedelchev, A.; Dinkov, R.; Shishkova, I.K.; Ivanov, M.; Atanassov, K.; Ribagin, S.; Nikolov Palichev, G.; et al. Commercial Ebullated Bed Vacuum Residue Hydrocracking Performance Improvement during Processing Difficult Feeds. Appl. Sci. 2023, 13, 3755. https://doi.org/10.3390/app13063755
Georgiev BE, Stratiev DS, Argirov GS, Nedelchev A, Dinkov R, Shishkova IK, Ivanov M, Atanassov K, Ribagin S, Nikolov Palichev G, et al. Commercial Ebullated Bed Vacuum Residue Hydrocracking Performance Improvement during Processing Difficult Feeds. Applied Sciences. 2023; 13(6):3755. https://doi.org/10.3390/app13063755
Chicago/Turabian StyleGeorgiev, Borislav Enchev, Dicho Stoyanov Stratiev, Georgy Stoilov Argirov, Angel Nedelchev, Rosen Dinkov, Ivelina Kostova Shishkova, Mihail Ivanov, Krassimir Atanassov, Simeon Ribagin, Georgi Nikolov Palichev, and et al. 2023. "Commercial Ebullated Bed Vacuum Residue Hydrocracking Performance Improvement during Processing Difficult Feeds" Applied Sciences 13, no. 6: 3755. https://doi.org/10.3390/app13063755
APA StyleGeorgiev, B. E., Stratiev, D. S., Argirov, G. S., Nedelchev, A., Dinkov, R., Shishkova, I. K., Ivanov, M., Atanassov, K., Ribagin, S., Nikolov Palichev, G., Nenov, S., Sotirov, S., Sotirova, E., Pilev, D., & Stratiev, D. D. (2023). Commercial Ebullated Bed Vacuum Residue Hydrocracking Performance Improvement during Processing Difficult Feeds. Applied Sciences, 13(6), 3755. https://doi.org/10.3390/app13063755