Selective Fragmentation of Lignocellulosic Biomass with ZnCl2·4H2O Using a Dissolution/Precipitation Method
Abstract
:1. Introduction
2. Materials and Methods
- The black solid obtained (Solid I) was washed with 5 × 20 mL of 0.1 N HCl and 5 × 20 mL of distilled water to eliminate residues of inorganic salt hydrate [18] or until the color of the solution became transparent.
- The dark viscous liquid obtained in the centrifugation was mixed with twice the water weight of the liquid, and then precipitation occurred. The solid, labeled Solid II, was filtered, and the mother liquor, which contain the dissolved hemicellulose, was separated. Solid II was isolated and washed with 5 × 20 mL of 0.1 N HCl and 5 × 20 mL of distilled water to remove the inorganic salt hydrate traces. Once the solution became clear, the solid was washed with acetone, and the clean solid was labeled Solid II.
3. Results
3.1. Treatment Using ZnCl2·4H2O
3.2. Catalytic Actvity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preethi; Gunasekaran, M.; Kumar, G.; Karthikeyan, O.P.; Varjani, S.; Rajesh Banu, J. Lignocellulosic Biomass as an Optimistic Feedstock for the Production of Biofuels as Valuable Energy Source: Techno-Economic Analysis, Environmental Impact Analysis, Breakthrough and Perspectives. Environ. Technol. Innov. 2021, 24, 102080. [Google Scholar] [CrossRef]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Vo, D.V.N. Recent Advances and Sustainable Development of Biofuels Production from Lignocellulosic Biomass. Bioresour. Technol. 2022, 344, 126203. [Google Scholar] [CrossRef]
- Manzanares, P. The Role of Biorefinering Research in the Development of a Modern Bioeconomy. Acta Innov. 2020, 37, 47–56. [Google Scholar] [CrossRef]
- Morone, P.; Yilan, G. A Paradigm Shift in Sustainability: From Lines to Circles. Acta Innov. 2020, 36, 5–16. [Google Scholar] [CrossRef]
- Amjith, L.R.; Bavanish, B. A Review on Biomass and Wind as Renewable Energy for Sustainable Environment. Chemosphere 2022, 293, 133579. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Davis, R.; Bhatt, A.H.; Zhang, Y.; Tan, E.C.D.; Ravi, V.; Heath, G. Biorefinery Upgrading of Herbaceous Biomass to Renewable Hydrocarbon Fuels, Part 1: Process Modeling and Mass Balance Analysis. J. Clean. Prod. 2022, 362, 132439. [Google Scholar] [CrossRef]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Integrated Biorefinery Processes for Conversion of Lignocellulosic Biomass to Value Added Materials: Paving a Path towards Circular Economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef]
- Lara-Serrano, M.; Morales-delaRosa, S.; Campos-Martín, J.M.; Fierro, J.L.G. Fractionation of Lignocellulosic Biomass by Selective Precipitation from Ionic Liquid Dissolution. Appl. Sci. 2019, 9, 1862. [Google Scholar] [CrossRef] [Green Version]
- Galbe, M.; Wallberg, O. Pretreatment for Biorefineries: A Review of Common Methods for Efficient Utilisation of Lignocellulosic Materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Bobokalonov, J.; Dzhonmurodov, A.; Xiang, Z. Optimizing Yield and Chemical Compositions of Dimethylsulfoxide-Extracted Birchwood Xylan. J. Bioresour. Bioprod. 2022, 7, 211–219. [Google Scholar] [CrossRef]
- Linan, L.Z.; Cidreira, A.C.M.; da Rocha, C.Q.; de Menezes, F.F.; Rocha, G.J.d.M.; Paiva, A.E.M. Utilization of Acai Berry Residual Biomass for Extraction of Lignocellulosic Byproducts. J. Bioresour. Bioprod. 2021, 6, 323–337. [Google Scholar] [CrossRef]
- Morales-delaRosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Chemical Hydrolysis of Cellulose into Fermentable Sugars through Ionic Liquids and Antisolvent Pretreatments Using Heterogeneous Catalysts. Catal. Today 2018, 302, 87–93. [Google Scholar] [CrossRef]
- Morales-de la Rosa, S.; García Fierro, J.L.; Campos Martín, J.M. Procedimiento de Hidrólisis de Biomasa Lignocelulósica. WIPO Patent WO2015004296, 15 January 2015. [Google Scholar]
- Morales-delaRosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Optimization of the Process of Chemical Hydrolysis of Cellulose to Glucose. Cellulose 2014, 21, 2397–2407. [Google Scholar] [CrossRef] [Green Version]
- Lara-Serrano, M.; Sáez Angulo, F.; Negro, M.J.; Morales-Delarosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Second-Generation Bioethanol Production Combining Simultaneous Fermentation and Saccharification of IL-Pretreated Barley Straw. ACS Sustain. Chem. Eng. 2018, 6, 7086–7095. [Google Scholar] [CrossRef]
- Lara-Serrano, M.; Fierro, J.L.G.; Morales-Delarosa, S.; Campos-Martín, J.M. High Enhancement of the Hydrolysis Rate of Cellulose after Pretreatment with Inorganic Salt Hydrates. Green Chem. 2020, 22, 3860–3866. [Google Scholar] [CrossRef]
- Padrino, B.; Lara-Serrano, M.; Morales-delaRosa, S.; Campos-Martín, J.M.; García Fierro, J.L.; Martínez, F.; Melero, J.A.; Puyol, D. Resource Recovery Potential from Lignocellulosic Feedstock upon Lysis with Ionic Liquids. Front. Bioeng. Biotechnol. 2018, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Brandt-Talbot, A.; Gschwend, F.J.V.; Fennell, P.S.; Lammens, T.M.; Tan, B.; Weale, J.; Hallett, J.P. An Economically Viable Ionic Liquid for the Fractionation of Lignocellulosic Biomass. Green Chem. 2017, 19, 3078–3102. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, H. Ionic Liquids in the Pretreatment of Lignocellulosic Biomass. Acta Innov. 2021, 38, 23–36. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, R.; Gupta, V.K. Ionic Liquid Based Pretreatment of Lignocellulosic Biomass for Enhanced Bioconversion. Bioresour. Technol. 2020, 304, 123003. [Google Scholar] [CrossRef]
- Varanasi, P.; Singh, P.; Auer, M.; Adams, P.D.; Simmons, B.A.; Singh, S. Survey of Renewable Chemicals Produced from Lignocellulosic Biomass during Ionic Liquid Pretreatment. Biotechnol. Biofuels 2013, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Gschwend, F.J.V.; Brandt, A.; Chambon, C.L.; Tu, W.C.; Weigand, L.; Hallett, J.P. Pretreatment of Lignocellulosic Biomass with Low-Cost Lonic Liquids. J. Vis. Exp. 2016, 2016, e54246. [Google Scholar] [CrossRef] [Green Version]
- Morais, A.R.C.; Pinto, J.V.; Nunes, D.; Roseiro, L.B.; Oliveira, M.C.; Fortunato, E.; Bogel-Łukasik, R. Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification. ACS Sustain. Chem. Eng. 2016, 4, 1643–1652. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Zetzl, C.; Gairola, K.; Kirsch, C.; Perez-Cantu, L.; Smirnova, I. High Pressure Processes in Biorefineries. Chem.-Ing.-Tech. 2011, 83, 1016–1025. [Google Scholar] [CrossRef]
- Morais, A.R.C.; Da Costa Lopes, A.M.; Bogel-Łukasik, R. Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chem. Rev. 2015, 115, 3–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farma, R.; Julita, R.I.; Apriyani, I.; Awitdrus, A.; Taer, E. ZnCl2-Assisted Synthesis of Coffee Bean Bagasse-Based Activated Carbon as a Stable Material for High-Performance Supercapacitors. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Jiang, H.; Chu, Q.; Ma, J.; Wu, S.; Shao, L.; Zhou, X. Dissolution of Lignocellulose with High Lignin Content in AlCl3/ZnCl2 Aqueous System and Properties of the Regenerated Cellulose Film. Int. J. Biol. Macromol. 2023, 234, 123590. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Ayeni, A.; Adeleke, R.; Daramola, M.O. Effect of Water of Crystallization on the Dissolution Efficiency of Molten Zinc Chloride Hydrate Salts during the Pre-Treatment of Corncob Biomass. J. Chem. Technol. Biotechnol. 2017, 92, 2468–2476. [Google Scholar] [CrossRef]
- Duan, G.; Zhao, L.; Chen, L.; Wang, F.; He, S.; Jiang, S.; Zhang, Q. ZnCl2 Regulated Flax-Based Porous Carbon Fibers for Supercapacitors with Good Cycling Stability. N. J. Chem. 2021, 45, 22602–22609. [Google Scholar] [CrossRef]
- Bi, Z.; Lai, B.; Zhao, Y.; Yan, L. Fast Disassembly of Lignocellulosic Biomass to Lignin and Sugars by Molten Salt Hydrate at Low Temperature for Overall Biorefinery. ACS Omega 2018, 3, 2984–2993. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Lindman, B.; Karlström, G.; Stigsson, L. On the Mechanism of Dissolution of Cellulose. J. Mol. Liq. 2010, 156, 76–81. [Google Scholar] [CrossRef]
- Sen, S.; Losey, B.P.; Gordon, E.E.; Argyropoulos, D.S.; Martin, J.D. Ionic Liquid Character of Zinc Chloride Hydrates Define Solvent Characteristics That Afford the Solubility of Cellulose. J. Phys. Chem. B 2016, 120, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Lavarda, G.; Morales-Delarosa, S.; Centomo, P.; Campos-Martin, J.M.; Zecca, M.; Fierro, J.L.G. Gel-Type and Macroporous Cross-Linked Copolymers Functionalized with Acid Groups for the Hydrolysis of Wheat Straw Pretreated with an Ionic Liquid. Catalysts 2019, 9, 675. [Google Scholar] [CrossRef] [Green Version]
- Morales-delaRosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Complete Chemical Hydrolysis of Cellulose into Fermentable Sugars through Ionic Liquids and Antisolvent Pretreatments. ChemSusChem 2014, 7, 3467–3475. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, H.; Zhang, Y.; Zhang, J.; He, J. Structure and Properties of Novel Regenerated Cellulose Films Prepared from Cornhusk Cellulose in Room Temperature Ionic Liquids. J. Appl. Polym. Sci. 2010, 116, 547–554. [Google Scholar] [CrossRef]
- French, A.D.; Santiago Cintrón, M. Cellulose Polymorphy, Crystallite Size, and the Segal Crystallinity Index. Cellulose 2013, 20, 583–588. [Google Scholar] [CrossRef]
- French, A.D. Idealized Powder Diffraction Patterns for Cellulose Polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Capel-Sanchez, M.C.; Barrio, L.; Campos-Martin, J.M.; Fierro, J.L.G. Silylation and Surface Properties of Chemically Grafted Hydrophobic Silica. J. Colloid Interface Sci. 2004, 277, 146–153. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-Rot and White-Rot Fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Hergert, H.L. Infrared Spectra of Lignin and Related Compounds. II. Conifer Lignin and Model Compounds1,2. J. Org. Chem. 1960, 25, 405–413. [Google Scholar] [CrossRef]
- Sun, R.; Hughes, S. Fractional Extraction and Physico-Chemical Characterization of Hemicelluloses and Cellulose from Sugar Beet Pulp. Carbohydr. Polym. 1998, 36, 293–299. [Google Scholar] [CrossRef]
- Sun, X.F.; Xu, F.; Sun, R.C.; Geng, Z.C.; Fowler, P.; Baird, M.S. Characteristics of Degraded Hemicellulosic Polymers Obtained from Steam Exploded Wheat Straw. Carbohydr. Polym. 2005, 60, 15–26. [Google Scholar] [CrossRef]
- Toledano, A.; Serrano, L.; Garcia, A.; Mondragon, I.; Labidi, J. Comparative Study of Lignin Fractionation by Ultrafiltration and Selective Precipitation. Chem. Eng. J. 2010, 157, 93–99. [Google Scholar] [CrossRef]
- Korbag, I.; Mohamed Saleh, S. Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol/Lignin Film. Int. J. Environ. Stud. 2016, 73, 226–235. [Google Scholar] [CrossRef]
- Kakuchi, R.; Yamaguchi, M.; Endo, T.; Shibata, Y.; Ninomiya, K.; Ikai, T.; Maeda, K.; Takahashi, K. Correction: Efficient and Rapid Direct Transesterification Reactions of Cellulose with Isopropenyl Acetate in Ionic Liquids. RSC Adv. 2017, 7, 14321. [Google Scholar] [CrossRef] [Green Version]
- Wan Daud, W.R.; Djuned, F.M. Cellulose Acetate from Oil Palm Empty Fruit Bunch via a One Step Heterogeneous Acetylation. Carbohydr. Polym. 2015, 132, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Vanoye, L.; Fanselow, M.; Holbrey, J.D.; Atkins, M.P.; Seddon, K.R. Kinetic Model for the Hydrolysis of Lignocellulosic Biomass in the Ionic Liquid, 1-Ethyl-3-Methyl-Imidazolium Chloride. Green Chem. 2009, 11, 390–396. [Google Scholar] [CrossRef]
- Schneider, L.; Haverinen, J.; Jaakkola, M.; Lassi, U. Solid Acid-Catalyzed Depolymerization of Barley Straw Driven by Ball Milling. Bioresour. Technol. 2016, 206, 204–210. [Google Scholar] [CrossRef]
- Bai, C.; Zhu, L.; Shen, F.; Qi, X. Black Liquor-Derived Carbonaceous Solid Acid Catalyst for the Hydrolysis of Pretreated Rice Straw in Ionic Liquid. Bioresour. Technol. 2016, 220, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, H.; Qian, X.; Chen, E.Y.X. Ionic Liquid-Water Mixtures: Enhanced Kw for Efficient Cellulosic Biomass Conversion. Energy Fuels 2010, 24, 2410–2417. [Google Scholar] [CrossRef]
- Si, W.; Li, Y.; Zheng, J.; Wei, S.; Wang, D. Enhanced Hydrolysis of Bamboo Biomass by Chitosan Based Solid Acid Catalyst with Surfactant Addition in Ionic Liquid. Carbohydr. Polym. 2017, 174, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kassaye, S.; Pant, K.K.; Jain, S. Hydrolysis of Cellulosic Bamboo Biomass into Reducing Sugars via a Combined Alkaline Solution and Ionic Liquid Pretreament Steps. Renew. Energy 2017, 104, 177–184. [Google Scholar] [CrossRef]
- Liang, J.; Chen, X.; Wang, L.; Wei, X.; Wang, H.; Lu, S.; Li, Y. Subcritical Carbon Dioxide-Water Hydrolysis of Sugarcane Bagasse Pith for Reducing Sugars Production. Bioresour. Technol. 2017, 228, 147–155. [Google Scholar] [CrossRef]
Barley Straw | Pruning Waste | Vine Shoots | |
---|---|---|---|
Extractives | 13.37 ± 0.10 | 9.30 ± 0.60 | 8.3 ± 0.2 |
Aqueous | 10.99 ± 0.31 | 6.90 ± 0.60 | 7.14 ± 0.4 |
Organic | 2.38 ± 0.26 | 2.40 ± 0.25 | 1.16 ± 0.25 |
Cellulose | 31.09 ± 1.25 | 37.80 ± 1.40 | 32.50 ± 0.5 |
Hemicellulose | 27.23 ± 0.44 | 14.0 ± 0.1 | 18.40 ± 0.3 |
Xylan | 22.06 ± 0.47 | 9.6 ± 0.1 | 16.70 ± 0.3 |
Galactan | 1.30 ± 0.01 | 2.20 ± 0.12 | 2.10 ± 0.07 |
Arabinan and Mannan | 3.87 ± 0.03 | 1.30 ± 0.02 | 1.93 ± 0.03 |
Acetyl Groups | 1.72 ± 0.02 | 4.7 ± 0.1 | 5.30 ± 0.05 |
Insoluble Lignin | 16.67 ± 1.13 | 25.4 ± 1.2 | 25.4 ± 0.1 |
Soluble Lignin | 2.10 ± 0.03 | 3.7 ± 0.2 | 1.60 ± 0.05 |
Ash | 3.89 ± 0.05 | 3.7 ± 0.1 | 3.60 ± 0.3 |
Dissolution Temperature | Solid I (wt.% of Initial Biomass) | Solid II (wt.% of Initial Biomass) | % Total Recovered Biomass a |
---|---|---|---|
60 °C | 84.3 | 7.9 | 92.2 |
70 °C | 49.1 | 18.4 | 70.1 |
80 °C | 57.5 | 11.0 | 68.5 |
90 °C | 61.3 | 8.0 | 69.3 |
Sample | Solid I (wt.% of Initial Biomass) | Solid II (wt.% of Initial Biomass) | Solid III (wt.% of Initial Biomass) | % Total Recovered Biomass a |
---|---|---|---|---|
Barley Straw | 35.9 | 24.1 | 3.1 | 63.1 |
Pruning Waste | 49.1 | 18.4 | 2.6 | 70.1 |
Vine shoot | 43.6 | 15.3 | 8.4 | 67.3 |
Cellulose | Hemicellulose | Insoluble Lignin | ||
---|---|---|---|---|
Barley Straw | Solid I | 45.1 ± 1.03 | 0.3 ± 0.03 | 45.6 ± 1.73 |
Solid II | 89.4 ± 3.2 | 1.2 ± 0.07 | 5.3 ± 0.52 | |
Pruning Waste | Solid I | 49.6 ± 0.8 | 1.3 ± 0.03 | 45.7 ± 0.81 |
Solid II | 82.9 ± 3.3 | 1.5 ± 0.03 | 5.9 ± 0.49 | |
Vine Shoot | Solid I | 47.6 ± 0.6 | 1.2 ± 0.02 | 39.4 ± 1.2 |
Solid II | 90.7 ± 3.5 | 1.1 ± 0.03 | 2.5 ± 0.51 |
Biomass | % Conversion of Structural Carbohydrates | ||
---|---|---|---|
Original | Solid I | Solid II | |
Barley Straw | 83.0 | 85.0 | 91.0 |
Pruning Waste | 75.9 | 89.4 | 94.6 |
Vine shoot | 87.1 | 91.2 | 95.4 |
Sample | TRS (g/L) | % Yield of Reducing Sugars | % Selectivity of Reducing Sugars | Total Monomeric Sugars (g/L) |
---|---|---|---|---|
Barley Straw | 2.9 | 45 | 54 | 1.8 |
B. S. Solid I | 3.6 | 54 | 63 | 1.9 |
B. S. Solid II | 5.7 | 80 | 88 | 4.6 |
Pruning Waste | 2.0 | 35 | 46 | 1.4 |
P.W. Solid I | 3.9 | 64 | 72 | 2.1 |
P.W. Solid II | 5.4 | 74 | 78 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Serrano, M.; Sboiu, D.M.; Morales-delaRosa, S.; Campos-Martin, J.M. Selective Fragmentation of Lignocellulosic Biomass with ZnCl2·4H2O Using a Dissolution/Precipitation Method. Appl. Sci. 2023, 13, 2953. https://doi.org/10.3390/app13052953
Lara-Serrano M, Sboiu DM, Morales-delaRosa S, Campos-Martin JM. Selective Fragmentation of Lignocellulosic Biomass with ZnCl2·4H2O Using a Dissolution/Precipitation Method. Applied Sciences. 2023; 13(5):2953. https://doi.org/10.3390/app13052953
Chicago/Turabian StyleLara-Serrano, Marta, Daniela M. Sboiu, Silvia Morales-delaRosa, and Jose M. Campos-Martin. 2023. "Selective Fragmentation of Lignocellulosic Biomass with ZnCl2·4H2O Using a Dissolution/Precipitation Method" Applied Sciences 13, no. 5: 2953. https://doi.org/10.3390/app13052953