Investigation of Annealing Process Effects on the Response and Stability of Sprayed Co2SnO4 Film under Ethanol Vapor
Abstract
1. Introduction
2. Experimental Procedure
2.1. Co2SnO4 Film Deposition
2.2. Characterization Techniques
2.3. Experimental Setup for Ethanol Detection
3. Results and Discussion
3.1. Characterization of Elaborated Films
3.2. Co2SnO4 and Co2SnO4/Co3O4 Sensing Results and Discussion under Ethanol
3.2.1. Detection Mechanism under Ethanol
3.2.2. Response Stability under Ethanol
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaneti, Y.V.; Moriceau, J.; Liu, M.; Yuan, Y.; Quadir, M.Z.; Jiang, X.; Yu, A. Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance. Sens. Actuators B Chem. 2015, 209, 889–897. [Google Scholar] [CrossRef]
- Gawli, Y.; Badadhe, S.; Basu, A.; Guin, D.; Shelke, M.V.; Ogale, S. Evaluation of n-type ternary metal oxide NiMn2O4 nanomaterial for humidity sensing. Sens. Actuators B Chem. 2014, 191, 837–843. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. Novel Ag-SnO2-βC3N4 ternary nanocomposite based gas sensor for enhanced low-concentration NO2 sensing at room temperature. Sens. Actuators B Chem. 2021, 326, 128910. [Google Scholar] [CrossRef]
- Pfaff, G. Wet chemical synthesis of BaSnO3 and Ba2SnO4 powders. J. Eur. Ceram. Soc. 1993, 35, 3017–3021. [Google Scholar] [CrossRef]
- Ishigaki, T.; Torisaka, A.; Nomizu, K.; Madhusudan, P.; Uematsu, K.; Toda, K.; Sato, M. Long phosphorescent Ca2SnO4 with minuscule rare earth dopant concentration. Dalton Trans. 2013, 42, 4781–4785. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, Y.; Zhao, X.; Liu, B.; Cao, M. Synthesis of Cd2SnO4–SnO2 hybrid micro-cubes with enhanced electrochemical performance for lithium-ion batteries. CrystEngComm 2014, 16, 922–929. [Google Scholar] [CrossRef]
- Lei, S.; Tang, K.; Chen, C.; Jin, Y.; Zhou, L. Preparation of Mn2SnO4 nanoparticles as the anode material for lithium secondary battery. Mater. Res. Bull. 2009, 44, 393–397. [Google Scholar] [CrossRef]
- Al-Shahrani, A.A. Sintering behavior and thermal property of Mg2SnO4. J. Mater. Sci.: Mater. Electron. 2005, 16, 193–196. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Yan, B.; Xiong, D.; Li, D.; Lawes, S.; Sun, X. Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. Adv. Energy Mater. 2016, 6, 1502175. [Google Scholar] [CrossRef]
- Aguilar-Martinez, J.; Pech-Canul, M.; Esneider, M.; Toxqui, A.; Shaji, S. Synthesis, structure parameter and reaction pathway for spinel-type Co2SnO4. Mater. Lett. 2012, 78, 28–31. [Google Scholar] [CrossRef]
- Chen, C.; Ru, Q.; Hu, S.; An, B.; Song, X.; Hou, X. Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries. Electrochim. Acta 2015, 151, 203–213. [Google Scholar] [CrossRef]
- Thota, S.; Narang, V.; Nayak, S.; Sambasivam, S.; Choi, B.; Sarkar, T.; Andersson, M.; Mathieu, R.; Seehra, M. On the nature of magnetic state in the spinel Co2SnO4. J. Phys. Condens. Matter. 2015, 27, 166001. [Google Scholar] [CrossRef]
- Qi, Y.; Du, N.; Zhang, H.; Wu, P.; Yang, D. Synthesis of Co2SnO4@C core–shell nanostructures with reversible lithium storage. J. Power Sources 2011, 196, 10234–10239. [Google Scholar] [CrossRef]
- Dinesh, S.; Barathan, S.; Premkumar, V.K.; Sivakumar, G.; Anandan, N. Hydrothermal synthesis of zinc stannate (Zn2SnO4) nanoparticles and its application towards photocatalytic and antibacterial activity. J. Mater. Sci.: Mater. Electron. 2016, 27, 9668–9675. [Google Scholar] [CrossRef]
- Alpuche-Aviles, M.; Wu, Y. Photoelectrochemical Study of the Band Structure of Zn2SnO4 Prepared by the Hydrothermal Method. J. Am. Chem. Soc. 2009, 131, 3216–3224. [Google Scholar] [CrossRef]
- Oh, L.; Kim, D.; Lee, J.; Shin, S.; Lee, J.; Park, I.; Ko, M.; Park, N.; Pyo, S.; Hong, K.; et al. Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 22991–22994. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, M.; Hu, C. Novel Zn2SnO4 Hierarchical Nanostructures and Their Gas Sensing Properties toward Ethanol. J. Phys. Chem. C 2011, 115, 5522–5529. [Google Scholar] [CrossRef]
- He, P.; Xie, Z.; Chen, Y.; Dong, F.; Liu, H. Co2SnO4/activated carbon composite electrode for supercapacitor. Mater. Chem. Phys. 2012, 137, 576–579. [Google Scholar] [CrossRef]
- Balasubramaniam, G.S.R.; Bhuvaneshwari, S.; Wu, J.J.; Abdullah, M.A.; Sambandam, A. Sonochemical synthesis of Co2SnO4 nanocubes for super capacitor applications. Ultrason Sonochem. 2018, 41, 435–440. [Google Scholar]
- Choi, K.I.; Kim, H.R.; Kim, K.M.; Liu, D.; Gao, G.; Lee, J.H. C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuators B Chem. 2010, 146, 183–189. [Google Scholar] [CrossRef]
- Sun, C.; Su, X.; Xiao, F.; Niu, C.; Wang, J. Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties. Sens. Actuators B Chem. 2011, 157, 681–685. [Google Scholar] [CrossRef]
- Wen, Z.; Zhu, L.; Mei, W.; Hu, L.; Li, Y.; Sun, L.; Cai, H. Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sens. Actuators B Chem. 2013, 186, 172–179. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Liu, Q.; Chen, R.; Zhang, H.; Yu, J.; Song, D. Core-shell structure of ZnO/Co3O4 composites derived from bimetallic organic frameworks with superior sensing performance for ethanol gas. Appl. Surf. Sci. 2019, 475, 700–709. [Google Scholar] [CrossRef]
- Chen, X.; Liang, R.; Qin, C.; Ye, Z.; Zhu, L. Coaxial electrospinning Fe2O3@Co3O4 double-shelled nanotubes for enhanced ethanol sensing performance in a wide humidity range. J. Alloys Compd. 2022, 891, 161868. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Liang, Q.; Zhang, J.; Liu, J. Nanoporous Co3O4–TiO2 Heterojunction Nanosheets for Ethanol Sensing. ACS Appl. Nano Mater 2022, 5, 4779–4786. [Google Scholar] [CrossRef]
- Bu, X.; Ma, F.; Wu, Q.; Wu, H.; Yuan, Y.; Hu, L.; Han, C. Metal-organic frameworks-derived Co3O4/Ti3C2Tx Mxene nanocomposites for high performance ethanol sensing. Sens. Actuators B Chem. 2022, 369, 132232. [Google Scholar] [CrossRef]
- Mhamdi, A.; Labidi, A.; Souissi, B.; Kahlaoui, M.; Yumak, A.; Boubaker, K.; Amlouk, A.; Amlouk, M. Impedance spectroscopy and sensors under ethanol vapors application of sprayed vanadium-doped ZnO compounds. J. Alloys Compd. 2015, 639, 648–658. [Google Scholar] [CrossRef]
- Umar, A.; Al-Hazmi, F.; Dar, G.N.; Zaidi, S.A.; Al-Tuwirqi, R.M.; Alnowaiserb, F.; Al-Ghamdi, A.A.; Hwang, S. Ultra-sensitive ethanol sensor based on rapidly synthesized Mg(OH)2 hexagonal nanodisks. Sens. Actuators B Chem. 2012, 166, 97–102. [Google Scholar] [CrossRef]
- Tiemann, M. Porous Metal Oxides as Gas Sensors. Chem. Eur. J. 2007, 13, 8376–8388. [Google Scholar] [CrossRef]
- Chakraborty, G.; Pugazhenthi, G.; Katiyar, V. Exfoliated graphene-dispersed poly (lactic acid)-based nanocomposite sensors for ethanol detection. Polym. Bull. 2019, 76, 2367–2386. [Google Scholar] [CrossRef]
- Labidi, A.; Gillet, E.; Delamare, R.; Maaref, M.; Aguir, K. Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens. Actuators B Chem. 2006, 120, 338–345. [Google Scholar] [CrossRef]
- Labidi, A.; Bejaoui, A.; Ouali, H.; Chaffar Akkari, F.; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessaïs, B.; Maaref, M. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection. Appl. Surf. Sci 2011, 257, 9941–9945. [Google Scholar] [CrossRef]
- Muzny, C.D.; Diky, V.; Kazakov, A.; Chirico, R.D.; Frenkel, M. Vapor Pressure. In CRC Handbook of Chemistry and Physics, 95th ed.; Haynes, W.M., Ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA; New York, NY, USA; Philadelphia, PA, USA, 2014; Volume 6, pp. 6–96. [Google Scholar]
- Khalifa, Z.S. Grain size reduction on nanostructured TiO2 thin films due to annealing. RSC Adv. 2017, 7, 30295–30302. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Hellegouarc’h, F.; Arefi-Khonsari, F.; Planade, R.; Amouroux, J. PECVD prepared SnO2 thin films for ethanol sensors. Sens. Actuators B Chem. 2001, 73, 27–34. [Google Scholar] [CrossRef]
- Labidi, A. Novel ethanol sensing properties of sprayed ternary Co2SnO4 thin layer. Mater. Lett. 2021, 294, 129784. [Google Scholar] [CrossRef]
- Belaqziz, M.; Amjoud, M.; Gaddari, A.; Rhouta, B.; Mezzane, D. Enhanced room temperature ozone response of SnO2 thin film sensor. Superlattices Microstruct. 2014, 71, 185–189. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Chen, X.X.; Sun, R.; Xiong, Z.; Zheng, L.S. Hydrothermal syntheses and gas sensing properties of cubic and quasi-cubic Zn2SnO4. Mater. Chem. Phys. 2011, 129, 53–61. [Google Scholar] [CrossRef]
- Robbie, K.; Sit, J.C.; Brett, M.J. Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B 1998, 16, 1115–1122. [Google Scholar] [CrossRef]
- Tait, R.N.; Smy, T.; Brett, M.J. Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 1993, 226, 196–201. [Google Scholar] [CrossRef]
- Balaji, G.; Rathinavel, S.; Vadivel, S. Design and fabrication of clad removed fiber optic based NiCo2O4 sensor for detection of ethanol and acetone gases. Optik 2021, 228, 166216. [Google Scholar] [CrossRef]
- Dirks, A.G.; Leamy, H.J. Columnar microstructure in vapor-deposited thin films. Thin Solid Films 1977, 47, 219–233. [Google Scholar] [CrossRef]
- Ben Nacer, S.; Jlidi, D.; Labidi, A.; Chaffar Akkari, F.; Touihri, S.; Maaref, M. Promising ethanol detection enhancement of Cu2O thin film deposited by GLAD technique. Measurement 2020, 151, 107208. [Google Scholar] [CrossRef]
- Zhu, C.L.; Chen, Y.J.; Wang, R.X.; Wang, L.J.; Cao, M.S.; Shi, X.L. Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO hetero nanostructures. Sens. Actuators B Chem. 2009, 140, 185–189. [Google Scholar] [CrossRef]
Under 500 ppm of Ethanol | |||
---|---|---|---|
Film | CTOas | CTOann | |
1St Semicircle | Rb × 106 Ω | 6.44 | 1257 |
Cb × 10−10 F | 1.812 | 1.88 | |
N | 0.996 | 0.988 | |
2nd Semicircle | Rgb × 106 Ω | 79.25 | |
Cgb × 10−7 F | 0.391 | ||
N | 0.874 |
Sensor Material | Fabrication Approach | Conc. (ppm) | Response “S” | Sens Temp. (°C) | τres/τrec (s) | Ref. |
---|---|---|---|---|---|---|
Co2SnO4 spinel thin film | Spray pyrolysis | 500 | 3.5 | 150 | 20/24 | [37] |
SnO2 (triton) | Spin coating | 500 | 3 | RT | 15/720 | [38] |
Zn2SnO4 spinel cube | Hydrothermal | 600 | 5.5 | 325 | 18/45 | [39] |
α-Fe2O3 nanorods | Hydrothermal | 500 | 8 | 220 | −/− | [40] |
Porous SiC | Electrochemical etching | Saturated vapors | 1.2 | RT | 85/57 | [41] |
NiCo2O4 spinel nanoparticles | Hydrothermal | 500 | 0.6 | RT | 20/26 | [42] |
TiO2 NWs | Electrospinning | 500 | 7.5 | 500 | 23/1 | [43] |
Cu2O nano-columnar | GLAD technique | 500 | 8.12 | 200 | 60/180 | [44] |
Zn2SnO4cuboctahedra | Chemical method | 600 | 0.01 | 325 | 18/45 | [45] |
Co2SnO4/Co3O4 composite | Spray pyrolysis | 500 | 13.5 | 200 | 35/30 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labidi, A. Investigation of Annealing Process Effects on the Response and Stability of Sprayed Co2SnO4 Film under Ethanol Vapor. Appl. Sci. 2023, 13, 2797. https://doi.org/10.3390/app13052797
Labidi A. Investigation of Annealing Process Effects on the Response and Stability of Sprayed Co2SnO4 Film under Ethanol Vapor. Applied Sciences. 2023; 13(5):2797. https://doi.org/10.3390/app13052797
Chicago/Turabian StyleLabidi, Ahmed. 2023. "Investigation of Annealing Process Effects on the Response and Stability of Sprayed Co2SnO4 Film under Ethanol Vapor" Applied Sciences 13, no. 5: 2797. https://doi.org/10.3390/app13052797
APA StyleLabidi, A. (2023). Investigation of Annealing Process Effects on the Response and Stability of Sprayed Co2SnO4 Film under Ethanol Vapor. Applied Sciences, 13(5), 2797. https://doi.org/10.3390/app13052797