Parametric Optimization and Numerical Analysis of GaAs Inspired Highly Efficient I-Shaped Metamaterial Solar Absorber Design for Visible and Infrared Regions
Abstract
1. Introduction
2. Numerical Analysis
3. Analysis of Results
4. Structural Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clausen, L.T.; Rudolph, D. Renewable energy for sustainable rural development: Synergies and mismatches. Energy Policy 2020, 138, 111289. [Google Scholar] [CrossRef]
- AL-Rjoub, A.; Rebouta, L.; Costa, P.; Barradas, N.; Alves, E.; Ferreira, P.; Abderrafi, K.; Matilainen, A.; Pischow, K. A design of selective solar absorber for high temperature applications. Sol. Energy 2018, 172, 177–183. [Google Scholar] [CrossRef]
- Parmar, J.; Patel, S.K.; Katkar, V. Graphene-based metasurface solar absorber design with absorption prediction using machine learning. Sci. Rep. 2022, 12, 2609. [Google Scholar] [CrossRef] [PubMed]
- Kumavat, P.P.; Sonar, P.; Dalal, D.S. An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renew. Sustain. Energy Rev. 2017, 78, 1262–1287. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Parmar, J.; Patel, S.K.; Katrodiya, D.; Nguyen, T.K.; Skibina, J.S.; Dhasarathan, V. Numerical investigation of gold metasurface based broadband near-infrared and near-visible solar absorber. Phys. B Condens. Matter 2020, 591, 412248. [Google Scholar] [CrossRef]
- Hao, W.; Chiou, K.; Qiao, Y.; Liu, Y.; Song, C.; Deng, T.; Huang, J. Crumpled graphene ball-based broadband solar absorbers. Nanoscale 2018, 10, 6306–6312. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.K.; Sathyamurthy, R.; Sharshir, S.W.; Kabeel, A.E.; Elkadeem, M.; Ma, Z.; Manokar, A.M.; Arıcı, M.; Pandey, A.; Saidur, R. Performance analysis of a modified solar still using reduced graphene oxide coated absorber plate with activated carbon pellet. Sustain. Energy Technol. Assess. 2021, 45, 101046. [Google Scholar] [CrossRef]
- Shi, Z.; Jayatissa, A.H. The impact of graphene on the fabrication of thin film solar cells: Current status and future prospects. Materials 2017, 1, 36. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Katrodiya, D.; Nguyen, T.K.; Holdengreber, E.; Dhasarathan, V. Broadband Metamaterial-based Near-infrared Absorber using Array of Uniformly Placed Gold Resonators. J. Opt. Soc. Am. B 2020, 37, 2163–2170. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Jadeja, R.; Katkar, V.; Parmar, J.; Ahmed, K. Ultra-wideband, polarization-independent, wide-angle multilayer Swastika-shaped metamaterial solar energy absorber with absorption prediction using machine learning. Adv. Theory Simul. 2022, 5, 2100604. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Katkar, V. Graphene-based multilayer metasurface solar absorber with parameter optimization and behavior prediction using Long Short-Term Memory model. Renew. Energy 2022, 191, 7–58. [Google Scholar] [CrossRef]
- Castañeda, Á.L.M.; Decastro-García, N.; García, D.E. Rhoaso: An early stop hyper-parameter optimization algorithm. Mathematics 2021, 9, 2334. [Google Scholar] [CrossRef]
- Fang, H.; Fu, X.; Zeng, Z.; Zhong, K.; Liu, S. An Improved Arithmetic Optimization Algorithm and Its Application to Determine the Parameters of Support Vector Machine. Mathematics 2022, 10, 2875. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Katkar, V. Metasurface-based solar absorber with absorption prediction using machine learning. Opt. Mater. 2022, 124, 112049. [Google Scholar] [CrossRef]
- Charola, S.; Patel, S.K.; Parmar, J.; Ladumor, M.; Dhasarathan, V. Broadband graphene-based metasurface solar absorber. Microw. Opt. Technol. Lett. 2020, 62, 1366–1373. [Google Scholar] [CrossRef]
- Obaidullah, M.; Esat, V.; Sabah, C. Multi-band (9,4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells. Opt. Laser Technol. 2021, 134, 106623. [Google Scholar] [CrossRef]
- Bagmanci, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Baklr, M.; Sabah, C. Solar energy harvesting with ultra-broadband metamaterial absorber. Int. J. Mod. Phys. B 2019, 33, 1950056. [Google Scholar] [CrossRef]
- Shuvo, M.M.K.; Hossain, M.I.; Rahman, S.; Mahmud, S.; Islam, S.S.; Islam, M.T. A Wide-Angle, Enhanced Oblique Incidence, Bend-Able Metamaterial Absorber Employed in Visible Region with a Sun Shape Resonator. IEEE Access 2021, 9, 126466–126480. [Google Scholar] [CrossRef]
- Mulla, B.; Sabah, C. Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting. Plasmonics 2016, 11, 1313–1321. [Google Scholar] [CrossRef]
- Rufangura, P.; Sabah, C. Graphene-based wideband metamaterial absorber for solar cells application. J. Nanophotonics 2017, 11, 036008. [Google Scholar] [CrossRef]
- Cen, C.; Chen, Z.; Xu, D.; Jiang, L.; Chen, X.; Yi, Z.; Wu, P.; Li, G.; Yi, Y. High quality factor, high sensitivity metamaterial graphene—Perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Charola, S.; Jani, C.; Ladumor, M.; Parmar, J.; Guo, T. Graphene-based highly efficient and broadband solar absorber. Opt. Mater. 2019, 96, 109330. [Google Scholar] [CrossRef]
- Lin, K.T.; Lin, H.; Yang, T.; Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 2020, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
- Baqir, M.A.; Choudhury, P.K.; Akhtar, M.N. ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes. Optik 2021, 237, 166769. [Google Scholar] [CrossRef]
- Alsaif, H.; Patel, S.K.; Ali, N.B.; Armghan, A.; Aliqab, K. Numerical Simulation and Structure Optimization of Multilayer Metamaterial Plus-Shaped Solar Absorber Design Based on Graphene and SiO2 Substrate for Renewable Energy Generation. Mathematics 2023, 11, 282. [Google Scholar] [CrossRef]
- Parmar, J.; Patel, S.K. Tunable and highly sensitive graphene-based biosensor with circle/split ring resonator metasurface for sensing hemoglobin/urine biomolecules. Phys. B Condens. Matter 2021, 624, 413399. [Google Scholar] [CrossRef]
- Jadeja, R.; Charola, S.; Patel, S.K.; Parmar, J.; Ladumor, M.; Nguyen, T.K.; Dhasarathan, V. Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J. Mater. Sci. 2020, 55, 3462–3469. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [Google Scholar] [CrossRef]
- Pornsuwancharoen, N.; Jalil, M.A.; Amiri, I.S.; Ali, J.; Yupapin, P. Dual mode grating sensor using microring conjugate mirror and plasmonic island. Microw. Opt. Technol. Lett. 2018, 60, 2595–2599. [Google Scholar] [CrossRef]
- Kler, A.M.; Zharkov, P.V.; Epishkin, N.O. Parametric optimization of supercritical power plants using gradient methods. Energy 2019, 189, 116230. [Google Scholar] [CrossRef]
- Bağmancı, M.; Karaaslan, M.; Ünal, E.; Akgol, O.; Karadağ, F.; Sabah, C. Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications. Phys. E Low-Dimens. Syst. Nanostructures 2017, 90, 1–6. [Google Scholar] [CrossRef]
- Yu, P.; Chen, X.; Yi, Z.; Tang, Y.; Yang, H.; Zhou, Z.; Duan, T.; Cheng, S.; Zhang, J.; Yi, Y. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 2019, 97, 109400. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Parmar, J.; Ladumor, M.; Ngo, Q.M.; Dhasarathan, V. Broadband and efficient graphene solar absorber using periodical array of C-shaped metasurface. Opt. Quantum Electron. 2020, 52, 250. [Google Scholar] [CrossRef]
- Lin, H.; Sturmberg, B.C.P.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T.K.; de Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 58, 227–235. [Google Scholar] [CrossRef]
- Azad, A.K.; Kort-Kamp, W.J.M.; Sykora, M.; Weisse-Bernstein, N.R.; Luk, T.S.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.-T. Metasurface Broadband Solar Absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef]
- Lakshmiprabha, K.E.; Govindaraju, C.; Mahendran, G. Broadband plus-shaped metasurface absorber based on graphene for visible and ultraviolet regions. Opt. Quantum Electron. 2022, 54, 774. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.; Chen, J.; Xie, N.; Tang, H.; Zhu, X.; Park, G.-S. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials. Nanoscale Res. Lett. 2018, 13, 153. [Google Scholar] [CrossRef]
- Sang, T.; Gao, J.; Yin, X.; Qi, H.; Wang, L.; Jiao, H. Angle-Insensitive Broadband Absorption Enhancement of Graphene Using a Multi-Grooved Metasurface. Nanoscale Res. Lett. 2019, 14, 105. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Li, J.; Hung, T.; Li, J. Study of energy absorption on solar cell using metamaterials. Sol. Energy 2012, 86, 1586–1599. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Parmar, J.; Ladumor, M. Broadband metasurface solar absorber in the visible and near-infrared region. Mater. Res. Express 2019, 6, 086213. [Google Scholar] [CrossRef]
- Katrodiya, D.; Jani, C.; Sorathiya, V.; Patel, S.K. Metasurface based broadband solar absorber. Opt. Mater. 2019, 89, 34–41. [Google Scholar] [CrossRef]
Design | Visible and Infrared Region from 500 nm to 3000 nm | Cost (Unit Cell) |
---|---|---|
I-shape metamaterial design | 96 | Low |
Thin wire metamaterial design | 95 | Low |
[32] | 90 | Moderate |
[33] | 90 | Moderate |
[34] | 86.5 | Low |
[35] | 93 | High |
[36] | 93.1 | Low |
[37] | 90 | High |
[38] | 95 | Low |
[39] | 80 | High |
[40] | 71.1 | High |
[21] | 70 | High |
[41] | 84 | Low |
[42] | 93.7 | Moderate |
[43] | 92 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharari, M.; Armghan, A.; Aliqab, K. Parametric Optimization and Numerical Analysis of GaAs Inspired Highly Efficient I-Shaped Metamaterial Solar Absorber Design for Visible and Infrared Regions. Appl. Sci. 2023, 13, 2586. https://doi.org/10.3390/app13042586
Alsharari M, Armghan A, Aliqab K. Parametric Optimization and Numerical Analysis of GaAs Inspired Highly Efficient I-Shaped Metamaterial Solar Absorber Design for Visible and Infrared Regions. Applied Sciences. 2023; 13(4):2586. https://doi.org/10.3390/app13042586
Chicago/Turabian StyleAlsharari, Meshari, Ammar Armghan, and Khaled Aliqab. 2023. "Parametric Optimization and Numerical Analysis of GaAs Inspired Highly Efficient I-Shaped Metamaterial Solar Absorber Design for Visible and Infrared Regions" Applied Sciences 13, no. 4: 2586. https://doi.org/10.3390/app13042586
APA StyleAlsharari, M., Armghan, A., & Aliqab, K. (2023). Parametric Optimization and Numerical Analysis of GaAs Inspired Highly Efficient I-Shaped Metamaterial Solar Absorber Design for Visible and Infrared Regions. Applied Sciences, 13(4), 2586. https://doi.org/10.3390/app13042586