Review of Control Technologies for Quiet Operations of Advanced Air-Mobility
Abstract
:1. Introduction
2. Passive Control Technologies
2.1. Tonal Noise Reduction
2.2. Broadband Noise Reduction
3. Multi-Disciplinary Optimization in Aeroacoustics
Noise Reduction within Optimization Framework
4. Active Noise Control (ANC) Technology
4.1. Zone Control
4.2. On-Blade Actuation
4.3. Active Tonal Noise Control of Multi-Rotor Air Mobility Vehicles at Approach
4.4. Calculation of Distributed Array of Loading Actuators
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Runway Safety|Federal Aviation Administration. Available online: https://www.faa.gov/newsroom/runway-safety-0 (accessed on 19 May 2022).
- Brookhouser, P.E. Prevention of Noise-Induced Hearing Loss. Prev. Med. 1994, 23. [Google Scholar] [CrossRef] [PubMed]
- Franssen, E.; van Wiechen, C.; Nagerlkerke, N.; Lebret, E. Aircraft noise around a large international airport and its impact on general health and medication use. Occup. Environ. Med. 2004, 61, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, M.; Stansfeld, S.A.; Job, R.; Berglund, B.; Head, J. Chronic aircraft noise exposure, stress responses, mental health, and cognitive performance in school children. Psychol. Med. 2001, 31, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Stansfeld, S.; Berglund, B.; Clark, C.; Lopez-Barrio, I.; Fischer, P.; Öhrström, E.; Haines, M.; Head, J.; Hygge, S.; van Kamp, I.; et al. Aircraft and road traffic noise and children’s cognition and health: A cross-national study. Lancet 2005, 365, 1942–1949. [Google Scholar] [CrossRef]
- Hubbard, H.H. Aeroacoustics of Flight Vehicles: Theory and Practice Volume 1: Noise Sources; NASA: Greenbelt, MD, USA, 1991. [Google Scholar]
- Lu, Z.; Debiasi, M.; Khoo, C. Acoustic characteristics of a multi-rotor MAV and its noise reduction technology. In INTER-NOISE and NOISE-CON; Ingenta Connect: New Brunswick, NJ, USA, 2016; pp. 393–403. Available online: http://www.ingentaconnect.com/content/ince/incecp/2016/00000253/00000008/art00043#expand/collapse (accessed on 20 August 2020).
- Bellocq, P.; Garmendia, I.; Sethi, V.; Patin, A.; Capodanno, S.; Rodriguez Lucas, F. Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor-Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers. J. Eng. Gas Turbine Power 2016, 138. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, P.; Chen, Y.; Guo, H. Experimental Study of Counter-Rotating Propellers for High-Altitude Airships. J. Propuls. Power 2015, 38, 1491–1496. [Google Scholar] [CrossRef]
- Diaz, P.V.; Rubio, R.C.; Yoon, S. Simulations of ducted and coaxial rotors for air taxi operations. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Stoll, A. Design of Quiet UAV Propellers; Stanford University: Stanford, CA, USA, 2012. [Google Scholar]
- Pascioni, K.A.; Rizzi, S.A.; Schiller, N.H. Noise reduction potential of phase control for distributed propulsion vehicles. AIAA Scitech 2019 Forum. 2019. [Google Scholar] [CrossRef]
- Grosveld, F. Calibration of the structural acoustics loads and transmission facility at NASA Langley Research Center. Proc. Inter-Noise 1999, 99, 1541–1546. [Google Scholar]
- Smith, B.; Gandhi, F.; Chair, R.; Niemiec, R. A Comparison of Multicopter Noise Characteristics with Increasing Number of Rotors. In Proceedings of the Vertical Flight Society’s 76th Annual Forum, Virtually, 5–8 October 2020. [Google Scholar]
- Whiteside, S.; Zawodny, N.; Fei, X.; Pettingill, N.A.; Patterson, M.D.; Rothhaar, P. An Exploration of the Performance and Acoustic Characteristics of UAV-Scale Stacked Rotor Configurations. In Proceedings of the AIAA SciTech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Leslie, A.; Wong, K.C.; Auld, D. Broadband noise reduction on a mini-UAV propeller. In Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), Vancouver, BC, Canada, 5–7 May 2008. [Google Scholar] [CrossRef]
- Cambray, A.; Pang, E.; Showkat Ali, S.A.; Rezgui, D.; Azarpeyvand, M. Investigation towards a better understanding of noise generation from UAV propellers. In Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, 25–29 June 2018. [Google Scholar] [CrossRef]
- Intravartolo, N.; Sorrells, T.; Ashkharian, N.; Kim, R. Attenuation of vortex noise generated by UAV propellers at low Reynolds numbers. In Proceedings of the AIAA SciTech Forum—55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Nelson, T.J. Practical Modifications for Low Reynolds Number Propeller Applications; Wichita State University: Wichita, KS, USA, 2005. [Google Scholar]
- Demoret, A.C.; Wisniewski, C.F. The impact of a notched leading edge on performance and noise signature of unmanned aerial vehicle propellers. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Schmitz, F.H. The challenges and possibilities of a truly quiet helicopter: 29th Alexander A. Nikolsky honorary lecture. J. Am. Helicopter Soc. 2016, 61, 041001-1–041001-33. [Google Scholar] [CrossRef]
- Martins, J.R.R.A. A Short Course on Multidisciplinary Design Optimization (Vol. 18); University of New South Wales Australia: Sydney, Australia, 2012. [Google Scholar]
- Pironneau, O. On optimum design in fluid mechanics. J. Fluid Mech. 1974, 64, 97–110. [Google Scholar] [CrossRef]
- Haftka, R.T. Optimization of flexible wing structures subject to strength and induced drag constraints. AIAA J. Aircr. 2012, 15, 1101–1106. [Google Scholar] [CrossRef]
- Grossman, B.; Gurdal, Z.; Haftka, R.T.; Strauch, G.J.; Eppard, W.M. Integrated Aerodynamic/Structural Design of a Sailplane Wing. AIAA J. Aircr. 2012, 25, 855–860. [Google Scholar] [CrossRef]
- Manning, V.M. Large-Scale Design of Supersonic Aircraft via Collaborative Optimization; Stanford University: Stanford, CA, USA, 1999; Available online: https://ui.adsabs.harvard.edu/abs/1999PhDT.......284M/abstract (accessed on 21 May 2022).
- Kroo, I.; Altus, S.; Braun, R.; Gage, P.; Sobieski, I. Multidisciplinary optimization methods for aircraft preliminary design. In Proceedings of the 5th Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, FL, USA, 7–9 September 1994; pp. 697–707. [Google Scholar] [CrossRef] [Green Version]
- Ganguli, R. A Survey of Recent Developments in Rotorcraft Design Optimization. AIAA J. Aircr. 2012, 41, 493–510. [Google Scholar] [CrossRef]
- Glaz, B.; Friedmann, P.P.; Liu, L. Helicopter Vibration Reduction throughout the Entire Flight Envelope Using Surrogate-Based Optimization. J. Am. Helicopter Soc. 2009, 54. [Google Scholar] [CrossRef]
- Amiet, R.K. Noise Due to Turbulent Flow Past a Trailing Edge. J. Sound. Vib. 1976, 47, 387–393. [Google Scholar] [CrossRef]
- Pagano, A.; Barbarino, M.; Casalino, D.; Federico, L. Tonal and broadband noise calculations for aeroacoustic optimization of propeller blades in a pusher configuration. AIAA J. Aircr. 2010, 43, 3. [Google Scholar] [CrossRef]
- Marinus, B.G.; Roger, M.; van den Braembussche, R.A.; Bosschaerts, W. Multidisciplinary optimization of propeller blades: Focus on the aeroacoustic results. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference 2011 (32nd AIAA Aeroacoustics Conference), Portland, OR, USA, 5–8 June 2011. [Google Scholar] [CrossRef] [Green Version]
- Ffowcs Williams, J.E.; Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1969, 264. [Google Scholar] [CrossRef]
- Jones, B.R.; Crossley, W.A.; Lyrintzis, A.S. Aerodynamic and Aeroacoustic Optimization of Rotorcraft Airfoils via a Parallel Genetic Algorithm. AIAA J. Aircr. 2010, 37, 1088–1096. [Google Scholar] [CrossRef]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. Low Reynolds Number Aerodyn. 1989, 54, 1–12. [Google Scholar] [CrossRef]
- Brentner, K.S. Prediction of Helicopter Rotor Discrete Frequency Noise: A Computer Program Incorporating Realistic Blade Motions and Advanced Acoustic Formulation; NASA Technical Memorandum 87721; NASA: Greenbelt, MD, USA, 1986. [Google Scholar]
- Ingraham, D.; Gray, J.; Lopes, L.V. Gradient-based propeller optimization with acoustic constraints. In Proceedings of the AIAA SciTech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef] [Green Version]
- Lueg, P. Process of Silencing Sound Oscillations. U.S. Patent Application No. 2043416, 9 June 1936. [Google Scholar]
- Bies, D.A.; Hansen, C.H. Engineering Noise Control, 2nd ed.; Bies, D.A., Hansen, C.H., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Cunefare, K. Active Noise Control. Special Lay-Language Paper for the 75th Anniversary Meeting of the Acoustical Society of America; ASA: Melville, NY, USA, 2004. [Google Scholar]
- Ikelheimert, B.J.; Nagel, R.T. Active noise control of an unducted model propeller. In Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 12–14 May 1997; pp. 441–447. [Google Scholar] [CrossRef]
- Koopmann, G.H.; Koopmann, W.; Chen, W. Active Noise Control to Reduce the Blade Tone Noise of Centrifugal Fans. J. Vib. Acoust. Stress Reliab. Des. 1988, 110, 377–383. [Google Scholar] [CrossRef]
- Sargent, D.C. Active Jet Acoustic Control of Low Frequency, In-Plane Helicopter Harmonic Noise; University of Maryland: College Park, MD, USA, 2012. [Google Scholar]
- Yu, Y.H.; Gmelin, B.; Splettstoesser, W.; Philippe, J.J.; Prieur, J.; Brooks, T.F. Reduction of helicopter blade-vortex interaction noise by active rotor control technology. Prog. Aerosp. Sci. 1997, 33, 647–687. [Google Scholar] [CrossRef]
- Hardin, J.C.; Lamkin, S.L. Concepts for reduction of blade/vortex interaction noise. AIAA J. Aircr. 2012, 24, 120–125. [Google Scholar] [CrossRef]
- Brooks, T.F.; Booth, E.R.; Jolly, J.J.R.; William, J.R.; Yeager, T.; Matthew, J.R.; Wilbur, L. Reduction of Blade-Vortex Interaction Noise through Higher Harmonic Pitch Control; American Helicopter Society: Phoenix, AZ, USA, 1990; Volume 35. [Google Scholar]
- Splettstoesser, W.R.; Lehmann, G.; van der Wall, B. Higher harmonic control of a helicopter rotor to reduce blade-vortex interaction noise. Z. Fluowissenschaften 1996, 14, 109–116. [Google Scholar]
- Anobile, A.; Bernardini, G.; Gennaretti, M.; Testa, C. Synthesis of Active Twist Controller for Rotor Blade–Vortex Interaction Noise Alleviation. J. Aircr. 2016, 53, 1865–1874. [Google Scholar] [CrossRef]
- Sim, B.W.; JanakiRam, R.D.; Lau, B.H. Reduced in-plane, low-frequency noise of an active flap rotor. J. Am. Helicopter Soc. 2014, 59, 1–17. [Google Scholar] [CrossRef]
- Sargent, D.C.; Schmitz, F.H. Fundamental experimental studies supporting active-jet acoustic control of in-plane rotor harmonic noise. J. Aircr. 2014, 51, 434–446. [Google Scholar] [CrossRef]
- Caleb Sargent, D.; Schmitz, F.H. Fundamental experimental studies supporting on-blade tip air blowing control of in-plane rotor harmonic noise. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. [Google Scholar] [CrossRef]
- Shi, Y.; Li, T.; He, X.; Dong, L.; Xu, G. Helicopter Rotor Thickness Noise Control Using Unsteady Force Excitation. Appl. Sci. 2019, 9, 1351. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Brentner, K.S.; Corle, E.; Schmitz, S. Study of active rotor control for in-plane rotor noise reduction. J. Aircr. 2019, 56, 179–190. [Google Scholar] [CrossRef]
- Gopalan, G.; Schmitz, F. Far-Field Near-In-Plane Harmonic Main Rotor Helicopter Impulsive Noise Reduction Possibilities. Am. Helicopter Soc. Annu. Forum 2008, 64, 675. [Google Scholar]
- Afari, S.O.; Mankbadi, R.R. Active Noise Control of Multi-Rotor Advanced Air Mobility Vehicles. J. Am. Helicopter Soc. 2022, 63. [Google Scholar] [CrossRef]
- Brentner, K.S. Modeling aerodynamically generated sound: Recent advances in rotor noise prediction. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.C.; Ahuja, K.K. Recent advances in active noise control. AIAA J. 1991, 29, 1058–1067. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afari, S.; Golubev, V.; Lyrintzis, A.S.; Mankbadi, R. Review of Control Technologies for Quiet Operations of Advanced Air-Mobility. Appl. Sci. 2023, 13, 2543. https://doi.org/10.3390/app13042543
Afari S, Golubev V, Lyrintzis AS, Mankbadi R. Review of Control Technologies for Quiet Operations of Advanced Air-Mobility. Applied Sciences. 2023; 13(4):2543. https://doi.org/10.3390/app13042543
Chicago/Turabian StyleAfari, Samuel, Vladimir Golubev, Anastasios S. Lyrintzis, and Reda Mankbadi. 2023. "Review of Control Technologies for Quiet Operations of Advanced Air-Mobility" Applied Sciences 13, no. 4: 2543. https://doi.org/10.3390/app13042543
APA StyleAfari, S., Golubev, V., Lyrintzis, A. S., & Mankbadi, R. (2023). Review of Control Technologies for Quiet Operations of Advanced Air-Mobility. Applied Sciences, 13(4), 2543. https://doi.org/10.3390/app13042543