Comparison of CW NUV and Pulse NIR Laser Influence on PbSe Films Photosensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Modification
2.2. Optical Measurement
3. Results and Discussion
3.1. Optical Characterization
3.2. Calculation of Optical Constants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tan, C.L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. [Google Scholar] [CrossRef]
- Karim, A.; Andersson, J.Y. Infrared detectors: Advances, challenges and new technologies. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kuala Lumpur, Malaysia, 2–4 July 2013; IOP Publishing: Bristol, UK, 2013; Volume 51, p. 012001. [Google Scholar]
- Weng, B.; Qiu, J.; Zhao, L.; Yuan, Z.; Chang, C.; Shi, Z. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity. In Proceedings of the Quantum Sensing and Nanophotonic Devices XI—International Society for Optics and Photonics, Bellingham, WA, USA, 1–6 January 2014; Volume 8993. [Google Scholar]
- Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Teng, Y.; Zhou, J.; Lin, G.; Hua, J.; Zeng, H.; Zhou, S.; Qiu, J. Ultrafast modification of elements distribution and local luminescence properties in glass. J. Non-Cryst. Solids 2012, 358, 1185–1189. [Google Scholar] [CrossRef]
- Ren, Y.X.; Dai, T.J.; Luo, W.B.; Liu, X.Z. Evidences of sensitization mechanism for PbSe thin films photoconductor. Vacuum 2018, 149, 190–194. [Google Scholar] [CrossRef]
- Grayer, J.; Ganguly, S.; Yoo, S.S. Embedded surface plasmon resonant disc arrays for improved MWIR sensitivity and increased operating temperature of PbSe photoconductive detectors. In Proceedings of the Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII, San Diego, CA, USA, 11–15 August 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11082. [Google Scholar]
- Kasiyan, V.; Dashevsky, Z.; Minna Schwarz, C.; Shatkhin, M.; Flitsiyan, E.; Chernyak, L.; Khokhlov, D. Infrared detectors based on semiconductor p-n junction of PbSe. J. Appl. Phys. 2012, 112, 086101. [Google Scholar] [CrossRef]
- Weng, B.; Qiu, J.; Yuan, Z.; Larson, P.R.; Strout, G.W.; Shi, Z. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings. Appl. Phys. Lett. 2014, 104, 021109. [Google Scholar] [CrossRef]
- Qiu, J.; Weng, B.; Yuan, Z.; Shi, Z. Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity. J. Appl. Phys. 2013, 113, 103102. [Google Scholar] [CrossRef]
- Liang, W.; Hochbaum, A.I.; Fardy, M.; Rabin, O.; Zhang, M.; Yang, P. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 2009, 9, 1689–1693. [Google Scholar] [CrossRef]
- Liang, W.; Rabin, O.; Hochbaum, A.I.; Fardy, M.; Zhang, M.; Yang, P. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399. [Google Scholar] [CrossRef]
- Sergeev, M.M.; Zakoldaev, R.A.; Itina, T.E.; Varlamov, P.V.; Kostyuk, G.K. Real-time analysis of laser-induced plasmon tuning in nanoporous glass composite. Nanomaterials 2020, 10, 1131. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, V.; Cabrera, M.J.; Seores, J.; Muñoz, D.; Fernández, J.F.; Enríquez, E. Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators. J. Eur. Ceram. Soc. 2018, 38, 2759–2766. [Google Scholar] [CrossRef]
- Sahoo, D.; Priyadarshini, P.; Dandela, R.; Alagarasan, D.; Ganesan, R.; Varadharajaperumal, S.; Naik, R. In situ laser irradiation: The kinetics of the changes in the nonlinear/linear optical parameters of As 50 Se 40 Sb 10 thin films for photonic applications. RSC Adv. 2021, 11, 16015–16025. [Google Scholar] [CrossRef]
- Hemati, T.; Weng, B. Theoretical study of leaky-mode resonant gratings for improving the absorption efficiency of the uncooled mid-infrared photodetectors. J. Appl. Phys. 2018, 124, 053105. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Song, X.; Yu, Y.; Cao, M.; Che, Y.; Yao, J.; Wang, J.; Yang, J.; Dai, H.; et al. High performance PbSe colloidal quantum dot vertical field effect phototransistors. Nanotechnology 2016, 27, 425204. [Google Scholar] [CrossRef] [PubMed]
- Konstantatos, G.; Sargent, E.H. Colloidal quantum dot photodetectors. Infrared Phys. Technol. 2011, 54, 278–282. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.; Bukhtiar, A.; Fu, C.; Song, T.; Wang, H.; Wang, Y.; Bo, H.; Tang, Y.; Zou, B. High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly (N-vinylcarbazole). RSC Adv. 2016, 6, 44514–44521. [Google Scholar] [CrossRef]
- Dolatyari, M.; Rostami, A.; Mathur, S.; Klein, A. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photodetectors. J. Mater. Chem. C 2019, 7, 5658–5669. [Google Scholar] [CrossRef]
- Nepomnyaschy, S.V.; Pogodina, S.B. Method for Manufacturing a Semiconductor Structure on the Basis of Lead Selenide. Patent WO2013/154462 A2, 17 October 2013. [Google Scholar]
- Nezhdanov, A.V. Structural and Optical Properties of Films of Chalcogenide Glassy Semiconductors Based on S, Se and Te. Ph.D. Thesis, National Research Nizhny Novgorod State University. N. I. Lobachevsky, Nizhny Novgorod, Russia, 2019; 162p. [Google Scholar]
- Olkhova, A.A.; Patrikeeva, A.A.; Sergeev, M.M. Electrical and Optical Properties of Laser-Induced Structural Modifications in PbSe Films. Appl. Sci. 2022, 12, 10162. [Google Scholar] [CrossRef]
- Vainio, M.; Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 4266–4294. [Google Scholar] [CrossRef]
- Shyju, T.S.; Anandhi, S.; Sivakumar, R.; Garg, S.K.; Gopalakrishnan, R. Investigation on structural, optical, morphological and electrical properties of thermally deposited lead selenide (PbSe) nanocrystalline thin films. J. Cryst. Growth 2012, 353, 47–54. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, Z.H.; El-Sebaii, A.A.; Al-Marzouki, F.M.; Al-Ghamdi, A.A. Structural, optical and electrical properties of cadmium-doped lead chalcogenide (PbSe) thin films. Phys. B Condens. Matter 2010, 405, 3384–3390. [Google Scholar] [CrossRef]
- Ukhanov, Y.I. Optical Properties of Semiconductors; Nauka: Moscow, Russia, 1977. [Google Scholar]
- Gupta, M.C.; Harrison, J.T.; Islam, M.T. Photoconductive PbSe thin films for infrared imaging. Mater. Adv. 2021, 2, 3133–3160. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Tominaga, J. Chalcogenide glasses in optical recording: Recent progress. J. Optoelectron. Adv. Mater. 2002, 4, 679–686. [Google Scholar]
Darkening | Bleaching | |
---|---|---|
Scanning speed, mm/s | 1 | 1 |
Power density, kW/cm2 | 0.74 | 1.09 |
Darkening | Bleaching | |
---|---|---|
Scanning speed, mm/s | 120 | 13 |
Pulse frequency, kHz | 5 | 50 |
Pulse duration, ns | 4 | 20 |
Power density, kW/cm2 | 1.45 | 0.39 |
Advantages | Disadvantages | ||
---|---|---|---|
Heat treatment | A long-established method Allows you to achieve increased absorption | Destructive influence Uncontrollable Growth of crystalline oxide Badly reproduced | |
NUV radiation | Darkening | The highest absorption is achieved in the visible range and in the range of 3–3.5 µm (CH4 absorption peak) | Possible film degradation over time |
Bleaching | In contrast to heat treatment, a non-crystalline oxide is formed Achieves the highest absorption in the range 4.5–5 µm (CO absorption peak) | Possible film degradation over time Oxide formation on the surface | |
NIR radiation | Darkening | Allows you to achieve increased absorption | Possibly destructive effect |
Bleaching | Less destructive mode than darkening mode In contrast to heat treatment, a non-crystalline oxide is formed | Possibly destructive effect Oxide formation on the surface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olkhova, A.A.; Patrikeeva, A.A.; Dubkova, M.A.; Kuzmenko, N.K.; Nikonorov, N.V.; Sergeev, M.M. Comparison of CW NUV and Pulse NIR Laser Influence on PbSe Films Photosensitivity. Appl. Sci. 2023, 13, 2396. https://doi.org/10.3390/app13042396
Olkhova AA, Patrikeeva AA, Dubkova MA, Kuzmenko NK, Nikonorov NV, Sergeev MM. Comparison of CW NUV and Pulse NIR Laser Influence on PbSe Films Photosensitivity. Applied Sciences. 2023; 13(4):2396. https://doi.org/10.3390/app13042396
Chicago/Turabian StyleOlkhova, Anastasiia A., Alina A. Patrikeeva, Maria A. Dubkova, Natalia K. Kuzmenko, Nikolai V. Nikonorov, and Maksim M. Sergeev. 2023. "Comparison of CW NUV and Pulse NIR Laser Influence on PbSe Films Photosensitivity" Applied Sciences 13, no. 4: 2396. https://doi.org/10.3390/app13042396
APA StyleOlkhova, A. A., Patrikeeva, A. A., Dubkova, M. A., Kuzmenko, N. K., Nikonorov, N. V., & Sergeev, M. M. (2023). Comparison of CW NUV and Pulse NIR Laser Influence on PbSe Films Photosensitivity. Applied Sciences, 13(4), 2396. https://doi.org/10.3390/app13042396